Guia de estilo de programacion Velneo

velrm® life is soft

Guia de estilo de programacion Velneo

Una primera versién con mucho futuro

Guia de estilo de programacion Velneo
¢Qué caracteristicas tienen los buenos programadores?
¢A quién esta orientado este documento?
¢Qué me aporta utilizar una guia de estilo?
¢Y si hay aspectos de esta guia que no me gustan?
¢Qué pasa con mi creatividad? ;Se pierde al usar una guia de estilo?
¢Por qué es tan importante el disefio en el desarrollo de aplicaciones?

El buen diseiio
¢Quién es Dieter Rams?
10 principios del disefio segun Dieter Rams

Principios universales de disefo & Experiencia
Principios universales de disefo con ejemplos de aplicacién

Soluciones
Recomendaciones sobre el nombre de los proyectos

Proyectos
Recomendaciones generales para proyectos de aplicacion y datos
Recomendaciones sobre el nombre de los proyectos
Disefio de la arquitectura de las aplicaciones
¢Es mejor tener un proyecto de datos o dividir las tablas en multiples proyectos?
¢Coémo organizo mis tablas de diferentes médulos en un Unico proyecto de datos?
¢Cudndo tiene sentido crear mas de un proyecto de datos?

Organizacidn de carpetas
No repitas la organizacion del inspector por tipo de objeto
Mantén la misma estructura en los proyectos de datos y aplicacién
Crea una carpeta para médulo o grupo funcional de objetos
¢Como organizar los objetos del proyecto de datos dentro del médulo?
¢COmo organizar los objetos del proyecto de datos dentro del médulo?
Usa la técnica del semaforo para organizar los objetos de interfaz de una tabla
Puntos de insercion en todas las toolbars y menus

Identificadores
Identificadores cortos y descriptivos
¢Por qué usar abreviaturas?
¢Por qué conviene usar un diccionario de abreviaturas?
¢Por qué abreviaturas de 3 caracteres?
Evita el uso de preposiciones y conjunciones
Utiliza el guion bajo como separador de abreviaturas
No uses como sufijo de los identificadores el tipo de objeto
Usa el identificador de la tabla como prefijo de los objetos con ese origen
Usa identificadores que combinen origen y destino para tubos y procesos
Usa sufijos en los identificadores de las tablas, tablas estaticas y variables globales

O O VO 0O NN NN SNN o

11
11

23
23

24
24
26
27
27
27
27

29
29
29
29
30
35
38
41

42
42
42
42
42
44
44
44
44
45
46

velrm® life is soft

Guia de estilo de programacion Velneo

No uses el sufijo de la tabla en los identificadores de campos e indices 46
Excepciones para que los campos punteros a tabla maestra no usen su mismo identificador 46
No te preocupes por los identificadores repetidos en el proyecto 47
Base de datos 48
Una base de datos, un responsable 48
Esquemas 48
Crea esquemas para documentar las tablas 48
Crea multiples esquemas 49
Numero de tablas y tamafio de registros 49
¢El ndmero de tablas influye en el rendimiento? 49
¢El tamafio de registro de una tabla como influye? 49
¢Es mejor tener muchas tablas con un Unico tipo de registro o es mejor tener una unica tabla
con multiples tipos de registro? 50
Tipos de tablas 50
¢Cuando es conveniente usar una tabla de tipo maestro arbolada? 50
¢Qué tamano de campo ID debo usar en una tabla arbolada? 50
¢Cuando es conveniente usar tablas de tipo histérico? 50
¢Y si creo siempre todas las tablas maestras? 50
¢Cudndo es conveniente usar tablas de extension? 51
¢Cudndo es conveniente usar tablas submaestras? 51
Campos 52
¢Son todos los campos Alfa igual de rdpidos? 52
¢Puedo usar campos de tipo tiempo para acumular horas, minutos y segundos? 53
¢Cudando debo utilizar campos de tipo férmula? 53
¢Cudndo es recomendable usar campos objeto texto? 53
Si tengo miles de objetos dibujo o texto ;Los guardo en la base de datos? 54
Guarda el contenido de diferentes campos en un solo campo objeto texto 54
Contenidos iniciales 55
Minimiza las dependencias en contenidos iniciales 55
Cuidado con los contenidos iniciales que dependen de punteros a hermanos contiguos 55
Evita el uso de funciones largas o complejas en contenidos inciales 55
Evita siempre que puedas el uso de contenido inicial JavaScript 56
En las importaciones de millones de registros optimiza el calculo de contenidos iniciales 56
indices 56
Crea siempre los indices de campos punteros a maestros 56
Evita el cambio de c6digo de maestro siempre que sea posible 57
Evita los indices “duplicados” que tienen la parte izquierda comun 57
¢Cudando usar indices condicionados? 58
Los indices acepta repetidas ocupan 4 bytes mas 59
Los indices de clave Unica son mas rapidos 59
Usa la longitud y conversién de la parte del indice para reducir el tamafio 59
indices de trozos y palabras 60
indices complejos 61
Por cada indice complejo crea cédigo para regenerarlo la primera vez que se instancia 61
¢Cuando debo usar un indice complejo? 61

velrm® life is soft

Guia de estilo de programacion Velneo

Actualizaciones
Utiliza actualizaciones siempre que puedas
En las actualizaciones por valor absoluto hay que tener en cuenta las bajas
Crea solo una actualizacion por tabla
Utiliza actualizaciones condicionadas
No utilices variables locales en la condicién o férmula de las actualizaciones

62
62
62
62
63
64

Evita complejas actualizaciones encadenadas que puedan ocasionar conflictos por bloqueo 64

Eventos de tabla o triggers
No modifiques datos en el trigger posterior
No dejes eventos de tabla vacios

Variables globales
Uso controlado de las variables globales en disco
Las variables globales son compartidas

Constantes
Usa constantes para todos los textos que puedan requerir traduccion
Organiza las constantes por su uso

Imagenes
Reduce el numero
No incluyas las imagenes a través del portapapeles
Optimiza las imagenes antes de importarlas
¢Doénde ubicar los objetos dibujo?
Evita la informacion redundante, icono y texto juntos no siempre tienen sentido
Utiliza una libreria de iconos homogénea
Utiliza iconos para dar soporte a High DPI

CsSs

¢Qué es un sistema de disefio?

¢Por qué es tan importante tener un sistema de disefio?

Sistema de disefio. Colores

Sistema de disefio. Tipografia

Sistema de disefio. Unidad minima

Sistema de disefio. Unidad de referencia

Sistema de disefio. Iconos

Sistema de disefio. Campos

Sistema de disefio. Botones y toolbars

Sistema de disefio. Etiquetas

¢Cudl es la clase para cada tipo de objeto, control o subcontrol?

Aplicar propiedades en las CSS

Aplicar iconos en las CSS

Aplicar a controles con identificadores especificos
Codificacion

Usa una descripcién del objeto clara, precisa y lo mas breve posible

Comenta bien tu cédigo

Aplica el mismo estilo de comentarios en todo el cédigo

64
64
64

65
65
65

66
66
66

68
68
68
68
69
69
70
73

73
73
74
74
76
77
78
79
80
81
83
84
85
86
88

90
90
90
90

velneor

Procesos

Funciones

life is soft

Guia de estilo de programacion Velneo

Criterios base para aplicar a los comentarios y algunas matizaciones
Comentario de inicio de cédigo

Comentario de log de cambios

Comentario antes del codigo y después de la descripcion
Comentario inicial de un nuevo bloque en el mismo nivel

Comentario en primera linea de un bloque sangrado

Comentario en primera linea tras finalizar un sangrado

Comentario local a un linea dentro de un bloque

No dejes lineas en blanco

¢Qué pasa con el cédigo que ya tengo escrito?

Aplica el criterio de responsabilidad unica

Separa interfaz de proceso

Evita la complejidad ciclomatica

Las verificaciones primero

¢Cuando es mejor un proceso que una funcién?

¢Cuando debo usar el comando ejecutar proceso?

¢Cuando debo usar el comando disparar objeto con un proceso?

Acorta cédigo

Ten en cuenta el numero limitado de pardametros

Documenta los pardmetros en el inicio de la funcién

Usa buenas descripciones en las variables locales que sean parametros
Ten en cuenta que en 1° plano genera una transaccion independiente
¢Cuando es mejor una funcién que un proceso?

Conexiones de evento

Evita el uso de la conexién pérdida de foco

Value changed es una buena opcién

Mejor usar “Ratén: boton soltado” que “Ratén: botén pulsado”
Incompatibilidad entre “item: simple clic” e “item: doble clic”
Onclose solo esta disponible en el AUTOEXEC

Controlar el cierre de un formulario en cuadro de didlogo
Controlar el cierre de un formulario en vista

Manejadores de evento

Un manejador puede llamar a otro del mismo objeto salvo en el marco AUTOEXEC
Las variables locales son compartidas entre los manejadores

Las cestas locales son compartidas entre los manejadores

Aplica el criterio de responsabilidad unica y evita cédigo repetido

Barra de menu

Menlus

No se pueden afiadir o quitar opciones, pero si limpiar y volver a construir

Minimiza las opciones de tus menus
El orden de las opciones de menu es la clave

91
92
92
92
93
93
93
94
94
95

96
96
96
97
98
99
99
100

101
101
101
102
102
103
103

104
104
104
104
105
105
105
105

106
106
106
106
106

106
108

108
109
109

velrm® life is soft

Guia de estilo de programacion Velneo

Crea menu de boton para cada maestro 110
Utiliza el mismo icono en todos los botones de menu 111
Toolbars 111
Utiliza iconos 112
Si desarrollas una aplicacion estandar, afiade una accién con punto de insercién en cada menu
113
Agrupa los botones por funcionalidad 114
Acciones 114
Evita el uso de iconos 115
Marco AUTOEXEC 115
Aplicar CSS en el evento Pre-Inicializacion 116
Permitir configurar que la barra de estado se puede mostrar u ocultar 116
Formularios de edicién 117
Identificadores 117
Resolucién minima 118
Tamafo del formulario 118
Tamafio de los subformularios 118
Tamafos y alineamientos de los tipos de control 119
Layouts 119
Titulo del formulario 121
Titulo de la pestana 122
¢Cuando en vista o en cuadro de didlogo? 122
Si lo disparas desde un proceso sale en cuadro de didlogo 123
Mostrar un formulario en vista lanzado desde un proceso 123
Formularios de menu 123
Identificadores 124
Layouts 125
Titulo de la pestana 128
Rejillas 128
Identificadores 129
Anchos y alineamientos de columnas en funcién del tipo de dato 129
Crea rejillas especificas para uso en formularios de maestros 130
Alternadores de lista 131
Usa un alternador en lugar de poner la rejilla directamente 131
Reducimos la cantidad de cédigo 131
Calidad 131
Revisa los objetos no usados directamente con la extension 132
Revisa los errores con el inspector en todos los proyectos 133
Revisa la ortografia con la extension 134

velrm® life is soft

Guia de estilo de programacion Velneo

Una primera version con mucho futuro

Esta es la primera versién de este documento que nos gustaria que siga creciendo y evolucionando.

Deseamos contar con tu participacion ya que este documento ha nacido con la idea de que pueda
convertirse en tu herramienta de trabajo, tanto si eres un profesional auténomo como si formas parte de
un equipo de desarrollo.

Estaremos encantados de saber que has usado este documento directamente o que los has utilizado
como base para crear tu propia guia de estilo de desarrollo de aplicaciones con Velneo.

Sabemos que aun nos queda mucho para que esta documento pueda llegar a publicarse como un libro, por
eso pedimos tu colaboracién a la vez que tu comprension para que sepas perdonarnos todas las erratas

que encuentres.

Envianos tus comentarios, correcciones y sugerencias a velneo@velneo.com

mailto:velneo@velneo.com

velrm® life is soft

Guia de estilo de programacion Velneo

Guia de estilo de programacion Velneo

¢Qué caracteristicas tienen los buenos programadores?

e Un buen programador sabe trabajar en equipo.

Desarrolla cédigo facil de mantener y entender.

Consigue ser productivo tanto él como su equipo.

Comparte su conocimiento y su codigo.

Ayuda a formarse a otros compafieros.

Colabora en la creacién y mantenimiento de una guia de estilo.

¢A quién esta orientado este documento?

A desarrolladores que desean utilizar un sistema disefiado para aprovechar todas las bondades de la
plataforma Velneo, facilitando una forma de programacion probada y fiable que acelera tu productividad al
evitar tener que pensar en muchos aspectos del dia a dia de un programador.

¢Qué me aporta utilizar una guia de estilo?
Aporta multiples ventajas como:

e No pensar.

Cuando tenga que programar objetos y el cédigo.

Cuando tenga que encontrar un objeto, subobjeto o cédigo.

Cuando tenga que organizar los nuevos objetos.

Cuando tenga que poner un identificador.

En general, en cualquier accion de desarrollo que deba ser mecanica.

o O O O

e Todos los programadores de un equipo desarrollamos igual.

o Poder entender el cédigo de cualquier programador me aportara un importante ahorro de
tiempo.
Que el resto del equipo entienda mi cédigo sin tener que explicarlo.
Que al editar cualquier objeto me sienta cémodo, como lo estaria con cualquier objeto que
hubiese desarrollado yo.

o En definitiva, conseguimos que nuestras aplicaciones sean mas faciles de mantener, y por
lo tanto hagan mas rentable mis horas de trabajo.

¢Y si hay aspectos de esta guia que no me gustan?

El motivo principal por el que entregamos esta guia en formato editable Word es que la adaptes a tus
criterios o los de tu equipo de desarrollo. En el peor de los casos esta guia supondra un estupendo guién
sobre el que podras construir tu propia guia de estilo de programacion.

¢Qué pasa con mi creatividad? ;Se pierde al usar una guia de estilo?

Al contrario, usar una guia de estilo te va a permitir ser mas productivo en la parte que menos valor aporta
a tu programacion. No tener que estar pensando en los criterios a aplicar te permite concentrarte en crear
objetos con el mejor disefio, usabilidad, el codigo mas optimizado posible. Es en esos aspectos donde la

velrm® life is soft

Guia de estilo de programacion Velneo

creatividad de los desarrolladores debe brillar y no en aspectos que perjudiquen el trabajo en equipo o la
mantenibilidad de la aplicacién.

¢Por qué es tan importante el disefio en el desarrollo de aplicaciones?

Comenzaré por dar una definicion de disefio con una frase de Charles Eames en respuesta a una entrevista
en 1970 en la que decia lo siguiente:

“El disefio es un plan para disponer elementos
de la mejor forma posible para alcanzar un fin especifico”

El disefio no tiene nada que ver con estas frases:

“Pon un logotipo bonito”
“le gusta a mi mujer, y ya sabes que las mujeres siempre tienen buen gusto”
“El disefio es una cuestion de gustos y estética”
“El disefio no es lo mio, dibujo muy mal”

Si analizamos bien una aplicaciéon nos daremos cuenta que esta compuesta por muchas piezas, unas son
visibles para el usuario y otras no:

e Base de datos: Tablas, indices, actualizaciones, etc.
e (Cddigo: Procesos, funciones, manejadores, etc.
e Interfaz: Formularios, rejillas, informes, etc.

Lo interesante de todo esto es que el disefio se debe aplicar a todas las piezas que forman una aplicacion,
no exclusivamente a las que tengan que ver con la interfaz. Es en este punto donde trataremos de que este
documento sirva para ayudarnos a analizar a fondo todas y cada una de las decisiones que tenemos que
tomar en el desarrollo de una aplicacion, ya que todas afectan al resultado final de la misma. Aspectos
como la optimizacién afecta directamente a conseguir una buena experiencia de usuario, un buen disefio
de formularios ayuda a mejorar la usabilidad y permitira al usuario ser capaz de moverse por la aplicacién
sin necesidad de consultar manuales o videos de ayuda para entender como funciona.

velrm@ life is soft

Guia de estilo de programacion Velneo

El buen diseno

La palabra disefio es clave en este documento y para ir entrando en materia, vamos a enumerar los 10
principios del disefio que declaré Dieter Rams.

¢Quién es Dieter Rams?

Minimalist Icon

Dieter Rams

Dieter Rams es un famoso disefiador aleman de la década de los 50 / 60, muy conocido por sus disefios
para Braum y Vitsce. Su manera de ver el disefio, con la maxima “Menos, pero con mejor ejecucion” y muy
centrado en la funcionalidad, marcé a otros muchos disefiadores, como es el caso de Jonathan Ive el
actual Jefe de disefio de Apple. Dieter enuncio lo que para él son los principios de disefio.

10 principios del disefo segun Dieter Rams

Principio Descripcion

El buen disefio es innovador. El disefio tiene una innovacién ilimitada, porque
cada nuevo avance tecnoldgico, permite crear
nuevos productos mejor disefiados.

El buen disefio hace util al producto. El objetivo primordial de un producto es su
utilidad. El disefio (la forma) debe ser
primordialmente practico y de manera secundaria
tiene que satisfacer ciertos criterios de caracter
psicolégico y estético, evitando de estos criterios
las caracteristicas que no potencian su utilidad.

El buen disefio es estético. El disefio bien ejecutado no carece de belleza. La
calidad estética de un producto forma parte
integral de su utilidad ya que los productos
utilizados cotidianamente tienden a tener un
efecto indirecto en las personas y su bienestar.

velneor

El buen disefio hace al producto comprensible.

El buen disefio es discreto.

El buen disefio es honesto.

El buen disefo perdura en el tiempo.

El buen disefio es amigo del medioambiente.

El buen disefio es consecuente con el minimo
detalle.

El buen disefio es el menor disefio posible.

life is soft

Guia de estilo de programacion Velneo

Un buen disefio simplifica la estructura del
producto y lo predispone a expresar claramente su
funcion mediante la intuicion del usuario.
Idealmente su propdsito sera intuitivo para todo
usuario.

Para que un producto sea discreto, tanto él como
su disefio deben ser sobrios y neutros (a la vez).
Un producto no debe ser una obra de arte o un
objeto de decoracion, que confunda y distorsione
su uso, debe ser estéticamente atractivo, si, pero
debe carecer de evocaciones.

Un disefio honesto nunca intenta falsificar el
auténtico valor e innovacidn del producto dado.
Asimismo, un disefio verdaderamente honesto
nunca trata de manipular al consumidor mediante
promesas de una utilidad apdcrifa, inexistente o
mas alla de la realidad fisica del producto.

Toda moda es inherentemente pasajeray
subjetiva. La correcta ejecucion del buen disefio da
como resultado productos inherentemente
objetivos y anacrénicamente Utiles. Estas
cualidades se ven reflejadas cuando los usuarios
tienen la tendencia de atesorar y favorecer
aquellos productos bien disefiados incluso en
aquellas sociedades cuyas tendencias de
consumo claramente favorecen productos
desechables.

Un buen disefio debe contribuir a la preservacion
del medio ambiente mediante la conservacién de
los recursos y la minimizacion de la
contaminacién fisica y visual durante el ciclo de
vida del producto.

Menos, pero con mejor ejecucion. Este enfoque
fomenta los aspectos fundamentales de cada
producto y por lo tanto evita arrastrarlos
torpemente con todo aquello que no es esencial. El
resultado ideal es un producto de mayor purezay
simplicidad.

Menos, pero con mejor ejecucion, este enfoque
fomenta los aspectos fundamentales de cada
producto y por lo tanto evita lastrarlos torpemente
con todo aquello que no es esencial. El resultado
ideal es un producto de mayor purezay
simplicidad.

Para terminar hacemos mencién a una frase de Antoine de Saint Exupéry.

“La perfeccién no se alcanza cuando no hay nada mas que aiadir,

10

\[elrE()® life is soft

Guia de estilo de programacion Velneo

sino cuando no hay nada que quitar”

Principios universales de diseno & Experiencia

Para la creacion de esta guia de estilo de programacion Velneo no hemos inventado nada, al contrario, nos
hemos apoyado en dos fuentes clave: los principios bédsicos de disefio y en la experiencia acumulada
durante 2 décadas en el desarrollo de aplicaciones empresariales con plataformas de desarrollo Velneo.

Utilizaremos los principios universales de disefio para argumentar las decisiones que se han tomado en el
desarrollo de aplicaciones Velneo documentadas en este guia.

Los principios universales de disefio no son conjeturas, son reales y estan basados en investigaciones
solidas, por ese motivo funcionan.

Hemos utilizado como base de los principios universales de disefio el libro “Principios Universales de
Disefio” de William Lidwell, Kritina Holden y Jill Butler publicado por BLUME.

Principios
unive(sales
de disefo

/

125 marsras de fomentsr s lacdedsd de us
irflur &0 la percepcadn, ncrementar o abraclivg
da los obpeios, doefiar de foma mas aterlaca
y ensefiar a ravds del deefio

BLUME

Principios universales de diseno con ejemplos de aplicacion

A lo largo del documento haremos hincapié en los diferentes principios de disefio que veremos aplicados
en esta guia con su descripcién y correspondiente ejemplo practico.

11

https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0ahUKEwjdpa-Ln8DXAhXLEOwKHVkmDgoQFghEMAk&url=https%3A%2F%2Fwww.amazon.es%2FPrincipios-universales-dise%25C3%25B1o-W-Lidwell%2Fdp%2F8480765321&usg=AOvVaw3B6GmzvMynqWP-sMseimyW
https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0ahUKEwjdpa-Ln8DXAhXLEOwKHVkmDgoQFghEMAk&url=https%3A%2F%2Fwww.amazon.es%2FPrincipios-universales-dise%25C3%25B1o-W-Lidwell%2Fdp%2F8480765321&usg=AOvVaw3B6GmzvMynqWP-sMseimyW

velrm® life is soft

Guia de estilo de programacion Velneo

Principios universales de disefo Ejemplo de aplicacion

El efecto de exposicion No te dejes guiar por la primera impresion al ver el
La exposicion repetida a estimulos hacia los disefio de una aplicacién. Espera a usarla durante
cuales se tienen sentimientos neutros aumenta el varios dias hasta que tus estimulos estén basados
atractivo de dichos estimulos. en la repeticion.

Aplicar disefio atemporal y duradero normalmente
se percibe como simple y poco interesantes, pero
con el uso se percibe la belleza de la
funcionalidad.

Viicaci - omolo, S

/7y company
7 name

Regla del 80/20 Dedicale el 80% del tiempo de desarrollo a ese

El 80% del empleo de un producto implica el 20% 20% de tu aplicacion.

de sus caracteristicas.
Si una funcionalidad no es util para el 80% de las
empresas no deberia estar incluida en el nicleo
estandar de tus aplicaciones.

[XON] Mi aplicacion - Ejemplo, S.A.

Mend general

Inicio
Ventas
Compras
Almacén

v v ovvw

Maestros
Contabilidad
Salir

Ejemplo, S.A.

jarboleya

Alineacion Utiliza la cuadricula en el disefio de tus

Los elementos de un disefio deben estar alineados formularios. Aplica la misma alineacién al mismo
entre si. De este modo se logra transmitir unidady tipo de dato.

cohesion.

12

velrm® life is soft

Guia de estilo de programacion Velneo

ece [vERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop.
fFo-m O% gOEBLOE Ll iAB® - R~
Inicio X = © vERP_2.app23.01 X CIVTAFACG X
B oo
R choese(#FAC = “1"; choose(#TOT_FAC <0, ~VTA_ABO@VERP_2_app.app, "Factura de venta"), "Pre-factura de venta")
o
W Factura Fecha fatura ~CLTGVERP 2.appiapp + - Comercal Serie stado
= @VR? 2 app app Estad
u' #NUM_FAC 11100+ | | 1J#CLT.NAME 1. #CMRNAME 1 WSERNAME iid
©
| e Hora' Contacto Forma de pago Aimacén
) 000 2] | L#cTTNAME £ #FPONAME LEALMNAVE
ES || Abarin Fecha Hora Descripeidn P Detalle | Albaranes Impuestos Observaciones Trazabili ¢ »
[S0-mom. 80-me.. 60-L. 200-Méxmodsonblo
WVTAALB. WFCH #HOR #DSC_EDT Abarin Focha Hora Dest
ATAALB.. #CH #HOR #DSC_EDT 90-Intora. 80-o.. 60-L.. 200-
A AL, HECH #HOR #OSC DT ATA AL HFCH #HOR #DSC_ET
ATAALB.. #FCH #HOR #DSC_EDT WTAALD HECH #HOR #0SC_EDT
AN, WECH #HOR #DSC_EDT ATAALD, HFCH #HOR #DSC_EDT
ATANLE. HFCH #HOR #DSC_EDT WA AL #ECH #HOR #0SC EDT
AN, HECH #HOR #DSCEDT ATAAL, #FCH #HOR #DSC_EDT
ATAALE.. HFCH #HOR #DSC_EDT WTAALD JECH #HOR #0SC_EDT
TANS. HECH #HOR #DSC_EDT ATAAL, #7CH #HOR #DSC_EDT
ATAALE. HFCH #HOR #DSC_EDT WTAALD #5CH 4HOR #DSC_EDT
AN, HFCH #HOR #DSC_EDT g R

%Dto. Basototal Base fotal (dio) Total VA Totalrecargo + Ret.IRPF - Ret: alquiler Total factura
0,00 0,000000 0,000000 0,000000 0,000000 | |0,000000 | 0,000000 0,000000

Contabilizada Aceptar Cancelar Opciones

Fragmentacion Debemos ser rigurosos en la aplicacion del
Técnica que consiste en combinar unidades de encarpetado de objetos de los proyectos para
informacion en un numero limitado de unidadesy facilitar su organizacion y localizacion.
fragmentos, de modo que la informacioén resulte e

mas facil de procesar y recordar. FO-mo® - 5 K- B B>

[iicio X | © VERP_2_app 23.01 X

Identificador Nombre Entr

» B Configuracién
» M Contabilidad
~ B Gestién
» W Almacén
» W Compras
» M Estadisticas
~ W Ventas
~ W Albaranes de venta
» M Albaranes de venta
» = Albaranes de venta
» W Albaranes de venta
~ W Facturas de venta
> M Facturas de venta
Facturas de venta
= Facturas de venta
Pedidos de venta

“

M Pedidos de venta
Pedidos de venta

= Pedidos de venta

W Lineas de pedidos de venta

‘«

Presupuestos de venta
M Presupuestos de venta
Presupuestos de venta
» W Presupuestos de venta
» W Lineas de presupuestos de venta
= Maestros
-

»
» & Recursos
‘

Color El color ayuda a que el usuario localice sin
El color se emplea en disefio para atraer la esfuerzo cognitivo el botén de llamada a la accién,
atencion, agrupar elementos, indicar significadosy como “Aceptar” en los formularios.
realzar la estética.
El borde del control de edicion con el foco ayuda a
su localizacién de forma rapida y precisa.

13

velneor

Confirmacion

Técnica para evitar acciones no intencionadas,
que consiste en exigir la verificacion de las
acciones antes de llevarlas a cabo.

Consistencia

La facilidad de uso de un sistema mejora cuando
las partes similares del mismo se expresan de
modo semejantes.

Limitacion
Método para reducir las acciones que se pueden
llevar a cabo en un sistema.

life is soft

Guia de estilo de programacion Velneo

Miaplcacion - Efompo, SA.

* Facturad

500 000 208000 2100

El cuadro de didlogo de confirmacién que se
muestra antes de la eliminacién de un registro al
pulsar el botén eliminar en un formulario.

~ Eliminar Factura de venta?
/

Cancelar No

Todos los formularios deben mantener los titulos,
cabecear, detalle y botones en posiciones
similares.

Misplcacén - Eemplo, S

308000
200000

255,00
000

122100

e
s
e

La aplicacidn de permisos para tener acceso a
opciones de menus o a la edicién de registros.

Opciones o datos solo disponibles para
supervisores.

14

velrm® life is soft

Guia de estilo de programacion Velneo

Empresas
Grupos de usuarios
Usuarios

API key

Config. de aplicacién

CSS

Diccionario permisos

Informes personalizables

Ments dindmicos

Personalizacion de rejillas y formularios
Plantillas de ficheros

Scripts
Utilidades >
Control Ocultar opciones avanzadas o datos de un
El nivel de control proporcionado por un sistema formulario a los que se accede con un botén que
debe guardar relacion a la eficacia y los niveles de evita que los usuarios con menos experiencia vean
experiencia de las personas que utilicen dicho demasiados en pantalla.
sistema. -
Facturas de venta
.
Disefio por comité Maquetacion de formularios, tamafios minimos de
Proceso de disefio basado en la creacién de controles, anchos de columnas de rejillas o el
consenso, toma de decisiones en grupo e iteracion sistema de comentarios del cédigo en procesos.
exhaustiva. u— 0 st mctnsn
Fo-m Of% sELOE o) iRZBE®a - R~
T I
Punto de entrada Disefia la inferfaz para que resulte sencillay
Tenemos tendencia a juzgar los libros por sus elegante. Mejor disefiar con tendencia al
cubiertas, los edificios por sus vestibulos y las minimalismo que a la sobrecarga de contenido.

webs por su portada.

15

velrm® life is soft

Guia de estilo de programacion Velneo

Misplcacén - Eempl, SA.

hame
Ley de Fitts Aplica un tamafio generoso a los botones y aplicar
El tiempo para desplazarse hasta un objeto es una un orden a los controles que reduzca el uso del
funcion del tamafio de dicho objeto y de la raton o la distancia al objetivo.

distancia hasta el mismo.
Utiliza menus contextuales o menus de botén para
conseguir que el usuario no tenga que desplazarse
para ejecutar acciones.

Formulario de alta

Formulario de modificacién
Formulario de baja

Invertir

Filtrar 3¥F3
Ordenar

Quitar de a lista el seleccionado
Generar lista con seleccionados

Generar vista con otro visor

& Vistas alternativas »
A Navegante 4
& Cestas »
Utilidades de lista »
Cinco modos de organizar la informacién Usa el orden alfabético por el nombre en maestros
Categoria, tiempo, ubicacién, orden alfabético y y con claves alfabéticas, aplica orden temporal
continuo. para documentos o registros con fecha y hora.

ece i aplcacon - Eempo, S

61800 X 22700
S0 1mec 23800 -zmaco -seano

16

velneor

Equilibrio entre flexibilidad y eficacia
A medida que aumenta la flexibilidad de un
sistema, disminuye su eficacia.

La forma sigue a la funcién

La belleza de un disefio constituye el resultado de
la pureza de su funcién (en la naturaleza pasa lo
contrario la funcién sigue a la forma)

Garbage in-garbage out

La calidad del rendimiento de un sistema depende
de la calidad de la entrada de la informacion de
dicho sistema.

life is soft

Guia de estilo de programacion Velneo

Utiliza el menor niumero posible de opciones de
menu. Busca el equilibrio entre las funcionalidades
configurables y la complejidad de un exceso de
configuracién.

ece Configuracion

Configuracién de la aplicacién
Nombre do a spcacion

(o 7] Ocultar 1a barra de estado

Iconos Contabilizacion externa Supervisor Datos Optimizaciones

Icono de fa aplicacién

company
name

Elimina los elementos redundantes como icono 'y
texto o que no aportan funcionalidad de forma
sencilla.

Es mejor que el usuario tenga una Unica forma de
hacer las cosas y que sea lo mas sencilla posible.

Estado

Aceptado

Rechazado

Limitar el tamafio de los campos de entrada a su
contenido o permitir solo la entrada de
determinados valores correctos ayuda al usuario a
no meter informacion basura.

Cuenta

IBAN Entidad Oficina DC Cuenta corriente

ES84 0081 4152 12 0001322458

17

velneor

El diagrama de Gutenberg

Diagrama que describe el patrén general seguido
por la vista cuando observamos una informacion
homogénea distribuida de manera regular.

La ley de Hick

El tiempo que se tarda en tomar una decision
aumenta a medida que se incrementa el nimero
de alternativas.

Jerarquia de necesidades

Para que un disefo tenga éxito, debe satisfacer las
necesidades basicas de las personas antes de
intentar satisfacer otras necesidades mas
elevadas.

life is soft

Guia de estilo de programacion Velneo

o o

il Strong Fallow Area

~

1 °

Terminal Area

Primary Optical Area

Weak Fallow Area

Ubicar los botones en la esquina inferior derecha
de un formulario ayuda al usuario a comprender
que es el paso final a realizar para cerrar la
edicion.

ece Mi aplicacién - Ejemplo, S.A.

O Idioma Espafiol *
Idioma

1506391

] o

Nombre
Adolfo Omar Perez Araya

~ Telétono

8205982

Eliminar

Cancelar

Reducir el numero de opciones de los menus
ayuda a acelerar la toma de decisiones.

Ventas
Compras
Almacén

v v v W

Maestros
Contabilidad
Salir

HABILIDAD

USABILIDAD

FIABILIDAD

FUNCIONALIDAD

18

velrm® life is soft

Guia de estilo de programacion Velneo

Realce El tamafio de letra del titulo nos ayuda a
Técnica eficaz para llamar la atencién sobre los destacarlo sobre el resto de informacion.
elementos de un disefio

Pedido de venta

Ne Pedido Fecha Cliente - 22509339
001/2017/V20007 7/1/17 ~ ¢ Aaron Elias Briceo Araya
N° documento Entregar el Contacto

20007 v

Conviene no realzar mas del 10% del disefio
visible, los efectos se diluyen a medida que
aumenta el porcentaje.

Horror vacui El espacio en blanco de la cabecera de los menus
Es una expresién latina que significa “temor al aumenta el valor percibido por el usuario de
vacio” y hace referencia al deseo de llenar los nuestro producto.

espacios vacios con informacion u objetos. A
medida que el horror vacui aumenta el valor .
percibido desciende. BIE

i aplicacian - Eompo, 4.

220000
292800
232200
225000
220000

135-56%F R LM OIS WA

a2, L 228800
w00 r2mo0 23800 -
670 s 26600 157800
S0 108900 226200 170800
6900 M0 227400 105600
S0 1me00 23000 178800

Representacion icénica El uso de iconografia de Material Design de Google
Uso de imagenes para facilitar la identificacion y el favorece que los usuarios identifiquen la
recuerdo de sefiales y controles. funcionalidad del icono al ser ampliamente

conocido por lo usuarios de dispositivos méviles o
las aplicaciones de escritorio de Google.

+ e

Legibilidad El nuevo estilo visual aplicado en las CSS de
Claridad visual de un texto, por lo general basada Velneo ayuda a la legibilidad de la informacion.
en el tamafio, el tipo de letra, el contraste, los

bloques de texto y el espaciado de los caracteres

utilizados.

19

velneor

Modularidad

Método para controlar la complejidad de un
sistema, que consiste en dividir los grandes
sistemas en multiples sistemas de menor tamafio.

La navaja de Ockham

Ante la posibilidad de elegir entre dos disefios
equivalentes desde el punto de vista funcional,
conviene decantarse por el mas sencillo.

Revelacion progresiva

Estrategia para controlar la complejidad de la
informacién que consiste en mostrar inicamente
la informacion necesaria o requerida en un
momento dado.

life is soft

Guia de estilo de programacion Velneo

eoe Articulo Canon 24mm

Articulo

LLLLLLL anon 24mm /3,5L 11 TS-E]

anon 24mm f/3,5L 1 TS-E

3635

res 5790313 No gestionar stocks

Famills t Objetivos - precio 255,00 Precio IVA incluido

309,00 VTPV

Exstencias Pdte. recibir Pdte. servir Movimientos Proveedores Detalle Tarifas Tarifas decliente Contabilizacién

Amacén - Existoncias Pto.reclbir Plo.sonvr Dispornible Tosrica
Almacén 26,00 1.088,00 225100 222500 -1137,0

26,00 1.088,00 225100 222500 113700

Eliminar Aceptar Cancelar Opciones

El menu de gestién es una muestra de
modularidad.
v Ventas
Presupuestos
Pedidos
Albaranes
Facturas
Cobros
Remesas de cobros
v Compras
Pedidos
Albaranes
Facturas
Pagos
Remesas de pagos
+ Almacén
Inventario valorado
Movimientos

Traspasos

Los nuevos combobox sin iconos son visualmente
mas sencillos de leer e interpretar.

Cancelado

Parcialmente servido

Servido

Los menus sencillos con boton de busqueda
avanzada facilitan el acceso a busquedas mas
complejas solo cuando es necesario para el
usuario.

20

velneor

Proximidad

Los elementos cercanos entre si se perciben como
mas relacionados que los que estan muy
separados.

Redundancia

Uso de mas elementos de los necesarios a fin de
mantener el rendimiento de un sistema en caso de
fallo de uno o mas elementos del mismo.

Proporcidn sefal-ruido

La degradacién de la sefial tiene lugar cuando la
informacion se presenta de manera ineficaz: letra
poco clara, grafias inadecuadas o iconos y
etiquetas ambiguos. La claridad de la sefial mejora
a través de la presentacién sencilla y concisa de la
informacion.

life is soft

Guia de estilo de programacion Velneo

Pedidos de venta

Periodo de fechas v v

Estado Pendiente Parcialmente servido Servido (@) Todo

e L-]

Ne Pedido
001/2017/v20007

Fecha Cliente
7/M17 Aaron Elias Brice...

Base
1.923,00

Total Estado
2.326,83 Pendiente

En los formularios de documentos de compras y
ventas los elementos de cabecera se ven
claramente relacionados entre si, al igual que
ocurre con los totales del pie, sin embargo en la
cabeceray los totales la distancia hace que no se
perciba relacion.

ece Mispicacion - Eenpio, S

9 petdos ceventa % B Ped. 00YZOIVZ0007 %

Pedido de venta

ooiz017v20007 i

St Recbona0dastin

Aunque las existencias o los saldos se calculan
automaticamente, siempre es conveniente
disponer de opciones de recalculo manual ante un
posible fallo.

Calcular saldos acumulados de todas las auxiliares

Calcular saldos en apuntes de todas las auxiliares

La representacion mediante una grafica claray
sencilla ayuda a interpretar la informacién de
forma rapida y concisa.

ece isplcitn - e, sa

Ejercicio

®

Tean

21

velrm® life is soft

Guia de estilo de programacion Velneo

Similitud El uso del mismo icono en los botones de menu
Los elementos similares se perciben como mas ayuda al usuario a entender que su
relacionados entre si que los que no lo son. funcionamiento es similar aunque sean campos
diferentes.
Cliente - 22509339 Comercial
Aaron Elias Briceo Araya : Ana Regina Benavides Ruiz
Contacto Forma de pago
@ Aaron Elias Briceo Araya : ¢ Recibo a 30 dias f/fra.
Conexion de lo uniforme El uso de cajas de grupo con controles del mismo
Los elementos que comparten propiedades tipo ayuda a entender que estan conectados.
visuales uniformes, como el color, se perciben mas e
relacionados entre si que los que no guardan o oo
ninguna conexion. e S e b
Es comercial
Es almacén
+ +
company
Visibilidad El uso de informacién como la trazabilidad ayuda a
El uso de un sistema mejora cuando su estado y entender el funcionamiento del ciclo de compras o
los métodos de empleo son claramente visibles. ventas.
14/::::; 3. 70;:;‘ b:)'OP’\'/E;;’\F‘;;\j‘;}%}e‘\ ’\3/1:;:73 370;6‘;‘ :(;72:7/V20005
Albaranes Facturas rectificativas (abonos) / Factura original
Fecka Total N Albarén a Fecha TotalN* Factura
1271114 396,88 001/2014/V1729
6115 813,12 001/2015/V4459
26115 369,05 001/2015/v5474
6/6/15 1.144,66 001/2015/V11999
/815 542,08 001/2015/V14791
2/mns 555,39 001/2015/V19449 i

22

velrm® life is soft

Guia de estilo de programacion Velneo

Soluciones

El nombre que damos a las soluciones es utilizado para crear la carpeta en disco que contendra los
proyectos. En principio los sistemas operativos actuales no deberian presentar ningin problema en el uso
de caracteres acentuados, sin embargo es recomendable no usar caracteres especiales que no puedan ser
utilizados en el nombre asignado a la carpeta.

Recomendaciones sobre el nombre de los proyectos
El nombre de ser Unico, descriptivo y lo mas corto posible. Veamos algunos ejemplos.

Gestion Integrada Demasiado genérico
Gestion Integrada #1 Usa caracteres especiales
Gestion Integrada para Industrias Derivadas del Demasiado largo

Proceso Lacteo

GIIDPL Dificil de recordar. No recomendable salvo que se
el nombre de un producto estandar cuyas siglas se
usan de forma constante.

Gestioén Integrada Ejemplosa Corto y personalizado para mi empresa, lo que lo
convierte en algo Unico

Ejemplosa GESINT Corto y aplicando un nombre de producto o
médulo
eGESINT Nombre comercial de un producto

23

velrm® life is soft

Guia de estilo de programacion Velneo

Proyectos

Los contenedores de objetos son la pieza clave en el disefio de la arquitectura de nuestras aplicaciones.
Por este motivo es bueno tener presentes algunas recomendaciones a la hora de crear aplicaciones con
mayor o menor complejidad.

| NON) Propiedades del proyecto

General Herencia Colores Fuentes ldiomas Comentarios

Solucidn:

m VvERP_2 en vatp://c5.velneo.com:36540

Nombre: Version: Icono 32x32:
vERP_2_app 23.01 (0]
Alias: Id. del fichero:
Icono 64x64:
velneo_verp_2_app 4ekd5b99.vca
Guardada: N° Historia: m
vie nov 10 17:48:41 2017 10376

Proteccion contra edicion

m Contrasefia

Repetir contrasefia

Recomendaciones generales para proyectos de aplicacion y datos

Recomendaciones generales para proyectos de aplicacién y datos

La longitud del nombre o descripcion de un proyecto no es un problema en si, sin embargo la longitud
del nombre nos afectard a la hora de poder ver los identificadores “completos” de los objetos. Por este
motivo, debemos usar el criterio menos es mas. En la siguiente imagen podemos observar que el
identificador del objeto se puede leer entero.

24

velrm® life is soft

Guia de estilo de programacion Velneo

Propiedades (382) 100
© VTA_FAC_G_MEN Accién

Descripcion Valor -
¥ Propiedades

Identificador VTA_FAC_G_MEN

Nombre Facturas

Estilos

Comentarios

(]

Tabla asociada
Texto de estado
Texto de tooltip
Texto de ayuda
Texto de icono
Icono m

Tecla aceleradora Ninguna
Combinacidn de la tec... Tecla

Comando Disparar objetos
Objeto 1 O VTA_FAC_G_MEN®VERP_2_app
Objeto 2

Sin embargo, si el nombre del proyecto fuese “Gestién Integrada de Automocién” ya no entraria en este
espacio. El resultado es que tendriamos que hacer muy ancho el dock donde se muestran las
propiedades de un objeto. Por este motivo, es recomendable usar o nombres cortos, siglas o
abreviaturas que permitan reducir el tamafio del nombre del proyecto.

El que existan varios proyectos con el mismo nombre, no supone un problema funcional debido a que a
nivel interno se utiliza el “id del fichero” y no su nombre. Sin embargo, no es conveniente tener nombres
duplicados ya que cuando los veamos juntos en un mismo esquema no podremos diferenciarlos de
forma directa.

En el nombre de los proyectos se pueden dejar espacios en blanco entre las diferentes palabras, es
conveniente que el equipo establezca el criterio de utilizar o no espacios en blanco para conseguir que
todos los proyectos se creen con el mismo criterio.

Es conveniente afiadir un sufijo al nombre del proyecto indicando si se trata de aplicacién o datos, en
esta guia utilizamos los sufijos “app” y “dat” respectivamente. Sin embargo, se puede utilizar prefijos
mas cortos como “a”y “d”.

25

velrm® life is soft

Guia de estilo de programacion Velneo

[NON) [4) Asistente de nueva solucién

Asistente de nueva solucion

Nombre del proyecto: Aplicacion
cliente_ejemplo_app
Nombre del proyecto: Database

cliente_ejemplo_dat

®
> §

Cancelar | < Retroceder | Siguiente > | Finalizar

El motivo por el que conviene utilizar estos sufijos esta relacionado con la posibilidad de crear el mismo
objeto en cualquier tipo de proyecto, por ejemplo podemos crear un proceso en el proyecto de aplicacion
o datos, si llamamos igual a ambos proyectos no podriamos saber cuando vemos el identificador del
objeto donde podremos encontrarlo.

El alias es un datos “obligatorio” que no debemos olvidarnos de cubrir, ya que se utilizara en diferentes
ambitos de la aplicacion, sobre todo al crear scripts de JavaScript en el que los identificadores de los

objetos se componen utilizando el alias del proyecto que lo contiene y el identificador del propio objeto.
Por este motivo la recomendacién es afadir el alias al proyecto en el mismo momento de su creacién.

Recomendaciones sobre el nombre de los proyectos

Gestion Integrada No identifica si es de datos o aplicacién
Gestion Integrada #1 app Usa caracteres especiales
Gestion Integrada para Industrias Derivadas del Demasiado largo

Proceso Lacteo app

26

velrm® life is soft

Guia de estilo de programacion Velneo

Ejemplosa_GESINT_app Corto, Unico, con sufijo de tipo y sin espacios
eGESINT dat Corto, Unico, con sufijo de tipo y con espacios
VERP_2_app Corto, Unico, con sufijo de tipo y sin espacios

Diseno de la arquitectura de las aplicaciones

¢Es mejor tener un proyecto de datos o dividir las tablas en multiples proyectos?

Aqui encaja perfectamente el principio de menos es mas. Si podemos tener un Unico proyecto de datos
serd mas facil de programar, mantener y evolucionar.

¢C6émo organizo mis tablas de diferentes médulos en un tnico proyecto de datos?
Aplicando una organizacion de encarpetado por médulo.

s Configuracion
2 Contabilidad
I Gestion

M Maestros

B Movil

M TPV

E Recursos

v vV vVvwvyyw

Dentro de cada médulo podremos crear subcarpetas con las tablas del mismo. Con esta organizacion si
mafiana queremos mover todas las tablas de un médulo a otro proyecto podremos hacerlo con un cortar y

pegar.

¢Cuando tiene sentido crear mas de un proyecto de datos?
Hay varios motivos por los que es necesario crear mas de un proyecto de datos:

1. Cuando tenemos un nucleo estandar para todas nuestras aplicaciones que no queremos tocar ni
engordar con funcionalidades especificas de cada cliente o sector, y sobre ese nucleo
desarrollamos una solucién personalizada para un cliente o sector. En este caso se suele crear un
proyecto de datos con las tablas especificas para ese cliente o sector que hereda del proyecto de
datos del nicleo. Esto nos obligara a tener una instancia de datos para cada proyecto.

2. Cuando un proyecto va a contener tablas comunes a multiples empresas, en este caso se crea una
Unica instancia de datos para esas tablas comunes y para los datos especificos de cada empresa
se crea un proyecto que heredado del de tablas comunes y que se instanciara una vez por cada
empresa. Para poder crear esta estructura de instancias necesitaremos dos o mas proyectos de
datos.

27

velrm® life is soft

Guia de estilo de programacion Velneo

cliente_ejemplo_app 1.0

cliente_ejemplo_dat 1.0 VERP_2_app 21.2

5/

VERP_2_dat 21.2

28

velrm® life is soft

Guia de estilo de programacion Velneo

Organizacion de carpetas

No repitas la organizacion del inspector por tipo de objeto

Para eso ya tenemos el inspector de objetos por tipo, en su lugar debemos buscar una organizacion
basada en la funcionalidad, por ejemplo por médulos. De esta forma facilitamos que si queremos copiar un
modulo completo a otro proyecto podamos hacerlo de forma rdpida y sencilla con un solo copiar/pegar.

Mantén la misma estructura en los proyectos de datos y aplicacion

Cuanto mas homogénea sea la organizacién de los objetos mas facil nos resultara encontrar objetos. Si
aplicamos el mismo criterio organizativo en los proyectos de aplicacién y datos conseguiremos facilitar
aun mas la localizacion de objetos y la posibilidad de moverlos o copiarlos a otros proyectos.

(] @ [#) vERP_2 (vatp://c5.velneo.com:36540) - Veln... @ @ [vERP_2 (vatp://c5.velneo.com:36540) - Veln...
' D - » a » » S a S ' D - » a » » S a S
Explorador de pr. X & @ & VERP_2_dat 23.01 X Explorador de pr. X & @ @ VERP_2 app 23.0.1 X
3 Solucion vERP_2. (1) Identificador N¢ Entrada A Solucién vERP_2 |4 » Identificador Nombre
= - » B Configuracion - - » Marco
g @ ”! » ma Contabilidad g @ Pl Configuracion
» BB Gestion » Bm Contabilidad
» BB Maestros » Bm Gestion
0] > B Moévil 0] » B Maestros
> B TPV » & Recursos
» & Recursos 1
0] 0]
0] 0]
< » 4 »

Crea una carpeta para médulo o grupo funcional de objetos

Las carpetas son contenedores de objetos, pero también de subcarpetas, por este motivo es conveniente
una buena organizacién basada en médulos o grupos funcionales con la que podemos navegar a través de
sus subcarpetas de forma rapida e intuitiva.

29

velrm® life is soft

Guia de estilo de programacion Velneo

(] (] m VERP_2 (vatp://c5.velneo.com:36540) - Velneo...
' D v m 3 a » x » » a »

@ VERP_2_app 23.0.1 X

Identificador N¢ Entrada
» Marco
» @m Configuracion
» B Contabilidad
¥ B Gestion
¥ BB Almacén
» Wm Articulo-Proveedor
» W Existencias
» B Inventario valorado
» B Movimientos de almacén
» BB Traspasos entre almacenes
I Compras
» B8 Albaranes de compra
» 8 Facturas de compra
» Im Pedidos de compra
v B Estadisticas
» W Estadisticas por afio
» Wm Estadisticas por articulo
» W Estadisticas por cliente
» Wm Estadisticas por comercial
» W Estadisticas por proveedor
» Ventas
» B Albaranes de venta
» B Facturas de venta
» I Pedidos de venta
» = Presupuestos de venta
Maestros
Recursos

v<v
oe

¢COmo organizar los objetos del proyecto de datos dentro del médulo?

En el proyecto datos, dentro de cada médulo en el caso de que hubiese un gran nimeros de objetos de un
determinado podriamos hacer subcarpetas por submédulo. Si el nimero no es demasiado elevado
podemos directamente crear subcarpetas por tipo de objeto.

® © @ [vERP_2 (vatp:/...
© VERP_2_dat 23.0.1 X

Identificador No Entrad
» I Configuracién

» Ba Contabilidad

v I Gestion

» BB Gestion

» I Gestion
» I Gestion
> B Gestion
» I Gestion
» Gestion
I8 Maestros
I Moévil

= TPV

& Recursos

vvww

Si hemos creado esquemas, muy recomendable, crearemos una subcarpeta (icono Objetos 4) conteniendo
todos los esquemas ordenados por orden alfabético del identificador.

30

\[elrE()® life is soft

Guia de estilo de programacion Velneo

[) (] m VERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop
© VERP_2_dat 23.0.1 X
Identificador Nombre Entrada Salida

» Bm Configuracién
» B Contabilidad
v B Gestion
v I Gestion
A EST Estadisticas
J. GES Gestién
> Bm Gestion
> Bm Gestion
> BB Gestion
> Bm Gestion
> Gestion
= Maestros
W Mévil
I TPV
& Recursos

vvww

Las tablas se organizan en una subcarpeta (icono Objetos 1) por orden alfabético. Si hay muchas tablas se
pueden crear subcarpetas por submédulo y dentro de cada una de ellas las tablas también por orden
alfabético.

[JON] [?) vERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop
© VERP_2_dat 23.0.1 X ‘
Identificador Nombre Entrada Salida

» W Configuracién
» Bm Contabilidad
v B Gestion

» B Gestion

¥ I Gestion
ART_PRV_G Articulos proveedores
COM_ALB_G Albaranes de compra
COM_FAC_G Facturas de compra
COM_PED_G Pedidos de compra
COM_PED_LIN_G Lineas de pedidos de compra

VTA_PRE_LIN_G Lineas de presupuestos de venta
VTA_TAR_G Tarifas

VTA_TAR_ART_G Tarifas por articulo
VTA_TAR_CLI_G Tarifas por cliente

» m Gestion
» W@ Gestion
» Im Gestion
» Gestion
8 Maestros
= Movil
]
-1

=]

s

;

s

e

S EST_ART.G Estadistica por articulo

€ EST_CLT.G Estadistica por cliente

£ EST_CMR_G Estadistica por comercial
€ EST_EJEG Estadistica por ejercicio
€ EST_PRV_G Estadistica por proveedor
£ EXS_G Existencias

£ INV_VALG Inventario valorado

S MOV_G Movimientos de almacén
€S TRAG Traspasos entre almacenes
S VTA_ALB_G Albaranes de venta

€ VTA_FAC_G Facturas de venta

€ VTA_PED_G Pedidos de venta

€ VTA_PED_LIN_G Lineas de pedidos de venta
€S VTA_PRE_G Presupuestos de venta

S

e

e

e

TPV
Recursos

vwww

31

velrm® life is soft

Guia de estilo de programacion Velneo

Las tablas estaticas se organizan en una subcarpeta (icono Objetos 9). Si hay muchas se aplica el criterio
de subcarpeta por submoddulo.

[BON) I[f] vERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop
6 VERP_2_dat 23.0.1 X
Identificador Nombre Entrada Salida

» I Configuraciéon
» @a Contabilidad
v m Gestion
» BB Gestion
» W= Gestion
¥ m Gestion
COM_FAC_EST_G Estado de las facturas de compra
COM_PED_EST_G Estado de los pedidos de compra
FAC_G Facturado
MOV_TIP_G Tipos de movimientos
VTA_PED_EST_G Estado de los pedidos de venta
VTA_PRE_EST_G Estado de los presupuestos de venta
B Gestion
8 Gestion
Gestion
Maestros
Mévil
TPV
Recursos

vwvww
OFEEE~~-~

Los indices complejos se organizan en una subcarpeta (icono Objetos 5). Si hay muchas se aplica el
criterio de subcarpeta por subméddulo.

[BON] m VERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop
© VERP_2_dat 23.0.1 X
Identificador Nombre Entrada Salida

» B Configuracion

» a Contabilidad

v I Gestion

> BB Gestion

> Bm Gestion

» BB Gestion

¥ B Gestion
£) COM_ALB_PRV_NOM Albaranes de compra por nombr...
£) COM_FAC_PRV_NOM Facturas de compra por nombre ...
£) COM_PED_PRV_NOM Pedidos de compra por nombre ...
£) VTA_ALB_CLT_NOM Albaranes de venta por nombre ...
£) VTA_FAC_CLT_NOM Facturas de venta por nombre d...
£) VTA_PED_CLT_NOM Pedidos de venta por nombre del...
£) VTA_PRE_CLT_NOM Presupuestos de venta por nom...

> @@ Gestion

3 Gestion

B Maestros

= Moévil

W TPV

E Recursos

vvww

32

velneor

life is soft

Guia de estilo de programacion Velneo

Las variables globales se organizan en una subcarpeta (icono Objetos 3). Si hay muchas se aplica el
criterio de subcarpeta por submaddulo.

B VvERP_2_dat 23.0.1 X ‘

Identificador

» I Configuracién
» m Contabilidad
v I Gestion

B8 Gestion
s Gestion
I Gestion
I Gestion
B8 Gestion

{vvww

ASI_FCH

ASI_DOC_TIP

DEC_PRE
DEC_RED
FCH_INV

PAR_ERP

PEERERRPERREER

Gestion
Maestros
Mévil

T
Recursos

v vwvyw
DEEE~

m VERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop

ASI_NUM_DOC
BTN_VER_PUL

CUR_ENT_TIP
DEC_CAN_ART

PAR_ERP_PRO

Nombre

ASI_COD_ENT Asistente: cédigo entidad
ASI_COD_REG Asistente: Cédigo registro fin

Asistente: fecha

Asistente: n°® documento
Asistente: tipo de documento
¢Botdn ver pulsado?

Tipo de entidad en curso
Decimales cantidad articulos
Decimales precios

Decimales importes

Fecha inventario

Pardmetro de maestros de VERP
Cédigo de parametro

Entrada

Salida

Los objetos de ejecucion como procesos, funciones, busquedas, tubos, etc. se organizan en una
subcarpeta (icono General). Si hay muchos se aplica el criterio de subcarpeta por submaddulo.

00
B VERP_2_dat 23.0.1 X

m VERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop

Identificador

Nombre

Entrada

Salida

» B Configuracién

» W Contabilidad

~ I Gestién

I Gestion

I Gestién

B Gestién

B Gestion

= Gestién
Gestién

(vwvvwvww

il COM_FAC_G_EMP_ENT_FCH Facturas de compra de una empresa/divisién entre fechas

il MOV_G_EMP_TIP_FCH

i1 VTA_FAC_G_EMP_ENT_FCH

€2 EJE_C_CAL_EST_ART

2 EJE_C_CAL_EST_ART_3P

€2 EJE_C_CAL_EST_CLT

¢ EJE_C_CAL_EST_CLT_3P

£2 EJE_C_CAL_EST_CMR

€2 EJE_C_CAL_EST_CMR_3P

-3 EJE_C_CAL_EST:EJE

€3 EJE_C_CAL_EST_EJE_3P

EJE_C_CAL_EST_PRV

EXS_G_CAL_SRV
EXS_ALT
SIG_NUM_DOC
POR_IVA
EST_CLT_ALT
EST_CMR_ALT
EST_EJEALT
EST_PRV_ALT
EST_ART_ALT
@ Maestros

M Mévil

W TPV

& Recursos

h th th th th h th h gF R LR

vvww

EJE_C_CAL_EST_PRV_3P

Movimientos por empresa, tipo y fecha

Facturas de venta de una empresa/divisién entre fechas
Célculo de estadisticas de articulos

Célculo de estadisticas de articulos (servidor)

Céleulo de estadisticas de clientes

Célculo de estadisticas de clientes (servidor)

Célculo de estadisticas de comerciales

Célculo de estadisticas de comerciales (servidor)
Célculo de estadisticas de ejercicios

Célculo de estadisticas de ejercicios (servidor)
Calculo de estadisticas de proveedores

Célculo de estadisticas de proveedores (servidor)
Célculo de existencias (Servidor)

Crear registro de existencia si no existe

Siguiente n° documento

% IVA

Crear registro de estadistica por cliente si no existe
Crear registro de estadistica por comercial si no existe
Crear registro de estadistica por ejercicio si no existe
Crear registro de estadistica por proveedor si no existe
Crear registro de estadistica por articulo si no existe

Lista:
Lista:
Lista:
Lista:
Lista:
Lista:
Lista:
Lista:
Lista:
Lista:

EJE_C@VER...
EJE_C@VER...
EJE_C@VER...
EJE_C@VER...
EJE_C@VER...
EJE_C@VER...
EJE_C@VER...
EJE_C@VER...
EJE_C@VER...
EJE_C@VER...

[@ Lista: COM_FAC_...
[@ Lista: MOV_G@UVE...
[@ Lista: VTA_FAC_G...

33

velrm® life is soft

Guia de estilo de programacion Velneo

Los maestros generales que se usan en varios modulos se organizan en una carpeta llamada Maestros
(icono Objetos 3). La organizacion interna de subcarpetas idéntica a la comentada para los mddulos.

@ © ® [[] vERP_2 (vatp://c5.velneo.com...
© vERP_2_dat 23.0.1 X

Identificador N¢ Entrada
» @B Configuracién

» B Contabilidad

» B Gestion

» B Maestros
» B Maestros
» @ Maestros
» BB Maestros
» Maestros
M
[|
=]

A wvww

Para el resto de objetos que se usan de forma genérica utilizaremos la carpeta Recursos (icono Recursos)
que contendra subcarpeta para los diferentes recursos, por ejemplo constantes (icono Objetos 8) que a su
vez contiene subcarpetas por el uso de las constantes (mensajes de error, mensajes genéricos, nombre,
preguntas, valores, etc.). También es normal crear subcarpetas para procesos o funciones de uso general
en la aplicacién.

[NON) [4)] VERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop
& VERP_2_dat 23.0.1 X

Identificador Nombre Entrada Salida
» Bm Configuracién
Contabilidad

Gestion

Maestros

Mévil

TPV

Recursos

s APIRest

I Constantes

B8 Mensajes de error
B Mensajes genericos
» Nombres

8 Preguntas

m Valores

v Procesos

Arranque
Importaciones
Migraciones
Triggers
Utilidades
Verificaciones

(vvvw
<vOEFEmEN
vVvwvwyw

vvvvwy

34

velrm® life is soft

Guia de estilo de programacion Velneo

¢COmo organizar los objetos del proyecto de datos dentro del médulo?

La organizacion de carpetas del modulo de aplicacion es similar en la parte de modulos, a partir de ahi las
subcarpetas siguen un criterio orientado a organizar los objetos teniendo presente que se usan para la
interfaz de la aplicacion.

En caso de que el proyecto contenga el objeto AUTOEXEC es recomendable poner la carpeta de Marco
(icono Marco) la primera.

@ © [?] vERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop
® VERP_2_app 23.0.1 X
Identificador Nombre Entrada Salida
¥ [Marco
E3) AUTOEXEC VERP
» Arranque
» Barra de menu
» Docks
> Formulario principal
3 Menu general

I8 Configuracién
m Contabilidad
M Gestion

8 Maestros

E Recursos

vVvwvww

Esta carpeta contendra diferentes subcarpetas organizadas por orden alfabético para contener objetos
relaciones con los proceso arranque, barra de menu, docks, formulario principal y menu general. En
definitiva objetos relaciones con el marco general de la aplicacién.

Cada de uno de los mddulos dispondra de una carpeta general y en su interior pueden darse 2 casos: Crear
subcarpetas con submaodulos o crear subcarpetas por tabla. Este segundo caso se da con las tablas de
configuracion (icono Objetos 5)

[] o [4] VERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop

@ VERP_2_app 23.0.1 X
Identificador Nombre Entrada Salida
» 8 Marco

v I Configuracién
» BB Configuracién de la aplicacién
» Bm CSS
» BB Definiciones de informe
» B Diccionario de permisos
» BB Empresas
» BB Grupos de usuarios
» B Log de usuarios concurrentes
» B8 Menu dindamico
» @B Permisos
» W Personalizacién de rejillas y formularios
» Bm Plantillas de ficheros
» Wm Scripts
» B Usuarios
» B Variables del usuario
B Contabilidad
B Gestion
8 Maestros
& Recursos

vvww

35

velneor

life is soft

Guia de estilo de programacion Velneo

y con las tablas maestras (icono Objetos 3) comunes para todos los médulos.

[BON) 8] vERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop

@ VERP_2_app 23.0.1 X ‘
Identificador Nombre Entrada Salida
» @ Marco

» @@ Configuracién

» a Contabilidad

» B Gestion

v B Maestros

Almacenes

Articulos

Clasificacién
Clasificaciéon de contactos
Contactos

Direcciones

Familias

Formas de pago

Idiomas

Medios de contacto
Monedas

Paises

Provincias

Relacién entre contactos
Series

Tarifas de venta

Tipos de documentos
Tipos de medios de contacto
I» Tipos de relacién

8 Turnos

Recursos

»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
-]

»

En las carpetas de médulos (icono Objetos 1) suelen crearse unas subcarpetas para organizar mejor

funcionalmente las tablas.

[BON) m VERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop

©® VERP_2_app 23.0.1 X

Identificador Nombre
» W Marco

» @B Configuracién

¥ [Contabilidad

Analitica

I Asientos

@ Informes

M Inmovilizado
@ Maestros
]

]

]

G

Procesos
Tesoreria
Tributos
stion

o

M Almacén

@ Compras
I Estadisticas
@ Ventas
Maestros

>
>
4
>
>
>
>
>
v m
>
>
>
>
[]
= Recursos

Entrada

Salida

36

velrm® life is soft

Guia de estilo de programacion Velneo

Dentro de cada subcarpeta suelen estar las subcarpetas (icono Objetos 1) relativas a las diferentes tablas
organizadas por orden alfabético.

[JOX] [ﬂ VERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop
@ VERP_2_app 23.0.1 X

Identificador Nombre Entrada Salida
» B Marco

B Configuracién

Contabilidad

Analitica

Asientos

Informes

Inmovilizado

Maestros

Procesos

B Anuales

I Funciones de contabilizacién remota
I Procesos de contabilizacién
Tesoreria

i Cobros

8 Conciliacién bancaria

s Pagos

Tributos

B8 Facturas emitidas

8 Facturas recibidas

8 Resumen de tributos

I Ficheros (Modelos tributarios)
stion

Almacén

8 Articulo-Proveedor

8 Existencias

n Inventario valorado

= Movimientos de almacén
n Traspasos entre almacenes
Compras

I Albaranes de compra

8 Facturas de compra

I Pedidos de compra
Estadisticas

Ba Estadisticas por afio

I Estadisticas por articulo

I Estadisticas por cliente

I Estadisticas por comercial
I Estadisticas por proveedor
Ventas

8 Albaranes de venta

8 Facturas de venta

8 Pedidos de venta

I Presupuestos de venta

@ Maestros

' Recursos

»
-

{vvvw~v]g

4

“»
vvvvgvvvyvvgvvyvgvvvvvgovv v vEvv-vEv-v-UREREN

o

Dentro de cada carpeta de tabla se aplica el criterio de organizaciéon que denominados “semaforo” por la
coincidencia en los colores y orden con el objeto fisico.

[JOX] [4) vERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop
© VERP_2_app 23.0.1 X ‘

Identificador Nombre Entrada Salida
i Marco

B Configuracion

8 Contabilidad

8 Gestion

» B8 Almacén

» B8 Compras
>
-

{vvvw

I8 Estadisticas

I Ventas

v [Albaranes de venta

@8 Albaranes de venta
Albaranes de venta

B Albaranes de venta

Facturas de venta

@8 Facturas de venta
Facturas de venta

a Facturas de venta

Pedidos de venta

@8 Pedidos de venta
Pedidos de venta

@ Pedidos de venta

s Lineas de pedidos de venta

Presupuestos de venta

B8 Presupuestos de venta
Presupuestos de venta

In Presupuestos de venta

8 Lineas de presupuestos de venta

I Maestros

 Recursos

4
vvvvgvvv v v~

4
4

37

velrm® life is soft

Guia de estilo de programacion Velneo

También podemos apreciar como dentro de una tabla se pueden organizar subcarpetas de tablas
relacionadas (icono Objetos 1) como en el caso de las lineas de detalle de pedidos y presupuestos que
estan organizadas dentro de la carpeta de sus cabecera de documento correspondientes.

Usa la técnica del semaforo para organizar los objetos de interfaz de una tabla

Por cada tabla es habitual tener que crear las 3 carpetas que describiremos a continuacién, aunque en
algunos casos puede ocurrir que solo tengamos que crear una o dos de ellas. Dentro los objetos se
agrupan por tipo y dentro de cada tipo por orden alfabético del identificador salvo en algunas excepciones
que se especifican.

En la carpeta roja o de interfaz (icono Interfaz) incluiremos todos los objetos que tiene que ver con la
interfaz organizados de la siguiente forma:

Menu.
Formularios principales de edicion. El formulario de edicién ird en segundo lugar. En muchos
casos se utiliza un unico formulario para alta baja y modificacion. En caso de tener formulario
independientes podremos ubicarlos juntos por orden alfabético.

e Subformularios. Detras de cada formulario se ubicaran los subformularios en el mismo orden en

que estan incluidos en el objeto separador de formularios, facilitando asi su localizacién y edicion.

Formularios especificos.

Formularios QML.

Alternadores de lista.

Multivistas.

Rejillas.

Rejillas avanzadas.

Arboles visor de tablas.

Casilleros.

ComboViews.

ListViews.

ViewFlows.

Listas QML.

Graficos.

Informes.

Esquemas con objetos visuales asociados.

38

velrEO® life is soft

Guia de estilo de programacion Velneo

[JON) [vERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop
@ VERP_2_app 23.0.1 X ‘

Identificador Nombre Entrada Salida
W Marco
I Configuracién
I8 Contabilidad
I Gestion
» I8 Almacén
» Im Compras
» Wm Estadisticas
¥ 8 Ventas

» Bm Albaranes de venta

¥ [Facturas de venta

v W Facturas de venta

VTA_FAC_G_MEN Facturas de venta
VTA_FAC_G Factura de venta
VTA_FAC_G_DET Detalle
VTA_FAC_G_ALB Albaranes
VTA_FAC_G_IMP Impuestos
VTA_FAC_G_IMP_BAS Bases e impuestos
VTA_FAC_G_IMP_TOT Totales
VTA_FAC_G_IMP_RET Retenciones
VTA_FAC_G_OBS Observaciones
VTA_FAC_G_TRZ Trazabilidad
VTA_FAC_G_COB Cobros

(vww~

Ficha: VTA_FAC_G...
Ficha: VTA_FAC_G...
Ficha: VTA_FAC_G...
Ficha: VTA_FAC_G.
Ficha: VTA_FAC_G...
Ficha: VTA_FAC_G...
Ficha: VTA_FAC_G.
Ficha: VTA_FAC_G...
Ficha: VTA_FAC_G...
Ficha: VTA_FAC_G...

Ficha: VTA_FAC_G
Ficha: VTA_FAC_G
Ficha: VTA_FAC_G
Ficha: VTA_FAC_G
Ficha: VTA_FAC_G
Ficha: VTA_FAC_G
Ficha: VTA_FAC_G
Ficha: VTA_FAC_G
Ficha: VTA_FAC_G
Ficha: VTA_FAC_G

#00000000000000oo00

VTA_FAC_G_ASI Asiento Ficha: VTA_FAC_G Ficha: VTA_FAC_G...
VTA_FAC_G_INF_PER Informe personalizado Ficha: VTA_FAC_G. Ficha: VTA_FAC_G.
VTA_FAC_G_INS Punto de insercién Ficha: VTA_FAC_G. Ficha: VTA_FAC_G...
VTA_FAC_G_ALT Nueva factura Ficha: VTA_FAC_G Ficha: VTA_FAC_G...
VTA_FAC_G_ABO Abono Factura de Venta Ficha: VTA_FAC_G Ficha: VTA_FAC_G.
¥ VTA_FAC_G Facturas de venta Lista: VTA_LFAC_G... [@ Lista: VTA_FAC_G...
EE VTA_FAC_G Lista Lista: VTA_FAC_G... [@ Lista: VTA_FAC G...

B VTA_FAC_G_LOC Lista
F§ VTA_FAC_G_TRZ Lista
» Facturas de venta
» BB Facturas de venta
» Wm Pedidos de venta
» B Presupuestos de venta
I Maestros
@ Recursos

Lista: VTA_FAC_G... [@ Lista: VTA_FAC_G.
Lista: VTA_LFAC_G... [@ Lista: VTA_FAC_G...

»
4

En caso de que existiesen muchos objetos de un determinado tipo podemos crear subcarpetas para
organizarlas mejor, normalmente estas subcarpetas tendran un nombre especifico ya que los objetos
estaran relacionados con alguna funcionalidad. En la imagen vemos un ejemplo de como se han agrupado
en una subcarpeta todos los subformularios de configuracién.

[JOX] [] vERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop
@ VERP_2 app 23.01 X

Identificador Nombre Entrada Salida -
» I Marco
~ m Configuracié

» W Configuracién de la aplicacién

» B Css

» W Definiciones de informe

» Im Diccionario de permisos

~ I Empresas

~ B Empresas

0O EMP_M_MEN Empresas
O EMP_M Empresas Ficha: EMP_M@VE... Ficha: EMP_M@VE...
O EMP_M_EMP_DIV Divisiones de la empresa Ficha: EMP_M@vI Ficha: EMP_M@VE...
O EMP_M_EMP_USR Usuarios de la empresa Ficha: EMP_M@V! Ficha: EMP_M@VE...
O EMP_M_CFG Configuracién Ficha: EMP_M@VI Ficha: EMP_M@VE...
O EMP_M_INS Punto de insercién Ficha: EMP_M@Vv! Ficha: EMP_M@VE...
O EMP_M_SUP Supervisor Ficha: EMP_M@v| Ficha: EMP_M@VE...
O EMP_M_DIV Divisién Ficha: EMP_M@VI Ficha: EMP_M@VE...
B EMP_M Empresas Lista: EMP_M@v| Lista: EMP_M@VE...
HE EMP_M Empresas Lista: EMP_M@V| Lista: EMP_M@VE..
B8 EMP_M_DIV Divisiones de la empresa Lista: EMP_M@v!| Lista: EMP_M@VE..
BB EMP_M_SEL Seleccién de empresa Lista: EMP_M@V! Lista: EMP_M@VE..
T2 EMP_M Empresas Lista: EMP_M@VE... Lista: EMP_M@VE...
~ B Configuracién por empresa
[EMP_M_CFG_ALM_ART Almacén y articulos Ficha: EMP_M@VE... [7] Ficha: EMP_M@VE...
O EMP_M_CFG_COM Compras Ficha: EMP_M@VI Ficha: EMP_M@VE...
O EMP_M_CFG_CON_GEN Contabilidad general Ficha: EMP_M@VI Ficha: EMP_M@VE...
O EMP_M_CFG_CON_CTA_GEN Cuentas contables generales Ficha: EMP_M@vI Ficha: EMP_M@VE...
O EMP_M_CFG_CON_CTA_IVA Cuentas contables de IVA Ficha: EMP_M@Vvi Ficha: EMP_M@VE...
o CFG_CON_CTA_REQ Cuentas contables de recargo Ficha: EMP_M@V! Ficha: EMP_M@VE...
o CFG_CON_CTA_RET Cuentas contables de retencién Ficha: EMP_M@vi Ficha: EMP_M@VE...
[m} CFG_DEC Decimales Ficha: EMP_M@v| Ficha: EMP_M@VE...
o CFG_GTO_BCO Gastos bancarios Ficha: EMP_M@Vv! Ficha: EMP_M@VE...
o CFG_INF Informes Ficha: EMP_M@vi Ficha: EMP_M@VE...
] CFG_IVA_REQ IVA y recargo Ficha: EMP_M@VI Ficha: EMP_M@VE...
[m] CFG_NUM_DOC Nimeros de documento Ficha: EMP_M@Vvi Ficha: EMP_M@VE...
o CFG_PAG Pagos Ficha: EMP_M@vi Ficha: EMP_M@VE...
[m] CFG_RET Retenciones Ficha: EMP_M@VI Ficha: EMP_M@VE...
[m} CFG_TES Tesoreria Ficha: EMP_M@vI Ficha: EMP_M®VE...
o CFG_TPV TPV Ficha: EMP_M@VI Ficha: EMP_M@VE...
o A Varios Ficha: EMP_M@Vvi Ficha: EMP_M@VE...
[m] CFG_VTA Ventas Ficha: EMP_M@Vvi Ficha: EMP_M@VE...
a CFG_INS Punto de insercién Ficha: EMP_M@v! Ficha: EMP_M@VE...
O EMP_M_CFG_COS_IND Reparto costes indirectos Ficha: EMP_M@VE... Ficha: EMP_M@VE...
» Empresas
» W Empresas
» I Usuarios por empresa -

39

velneor

life is soft

Guia de estilo de programacion Velneo

En la carpeta amarilla (icono General) incluiremos los objetos de ejecucion que no tienen interfaz, se
ubicaran por orden alfabético dentro de cada tipo. El orden de organizacién serd el siguiente:

Busquedas.
Localizadores.
Lupas.

Cestas.

Procesos.
Funciones.

Tubos de ficha.
Tubos de lista.
Colas.

Impresoras légicas.
Protocolos TCP/IP.
Dispositivos serie.
Librerias externas.
Ficheros adjuntos.

® VERP_2_app 23.0.1 X

Identificador

»

4
»
v

»
»

Marco
Configuracién
Contabilidad
Gestién
B Almacén
@ Compras
I Estadisticas
B Ventas
» @B Albaranes de venta
¥ [Facturas de venta
» BB Facturas de venta
v Facturas de venta
il VTA_FAC_G
ii VTA_FAC_G_PDT_CON
@ VTA_FAC_G_GEN
& VTA_FAC_G_SEL
£ VTA_FAC_G_CON
£ VTA_FAC_G_GET_MOV
£ VTA_FAC_G_LST_CON
£ VTA_FAC_G_LST_DES_CON
X VTA_FAC_G_LST_VAC
X VTA_FAC_G_NUE
£ VTA_FAC_G_PRT_LST
£ VTA_FAC_G_TO_APU
£ VTA_FAC_G_TO_MOV
£ VTA_FAC_G_TO_VTA_ALB
£ VTA_FAC_G_TO_VTA_FAC
£ VTA_FAC_G_TO_VTA_PED
¢ VTA_FAC_G_TO_VTA_PRE
£ VTA_FAC_G_TO_VTO_COB
£ VTA_FAC_G_VER
&= VTA_FAC_G
» B Facturas de venta
» B Pedidos de venta
» B Presupuestos de venta
Maestros
Recursos

{v~-RERE

Nombre

Facturas de venta

Facturas de venta pendientes de contabilizar
Facturas de venta generadas

Facturas de Venta - Multi-seleccién
Contabilizar una facturas de venta

Obtener lineas factura de venta

Contabilizar una lista de facturas de venta
Descontabilizar una lista de facturas de venta
Facturas de venta lista vacia

Factura de venta nuevo

Imprimir listado de facturas de venta
Apuntes del asiento de una factura de venta
Lineas de detalle de una factura de venta
Albaranes de una factura de venta

Factura de venta Abonos

Factura de venta Pedidos de venta

Factura de venta Presupuestos de venta
Vencimientos a cobrar de una factura de venta
Ver factura de venta

Facturas de venta

m VERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop

Entrada Salida
[@ Lista: VTA_FAC_G...
[# Lista: VTA_FAC_G...
[@ Lista: VTA_FAC_G...
[Lista: VTA_FAC_G...
Ficha: VTA_FAC_G... [@ Lista: ASI_C@VER...
@ Lista: MOV_G@VE...
[@ Lista: VTA_LFAC_G... [@ Lista: VTA_FAC_G...
[# Lista: VTA_LFAC_G... [# Lista: VTA_FAC_G...
[# Lista: VTA_FAC_G...
Ficha: VTA_FAC_G...
[# Lista: VTA_FAC G...
Ficha: VTA_FAC_G... [# Lista: APU_C@VE...
Ficha: VTA_FAC_G... [@ Lista: MOV_G@VE...
Ficha: VTA_FAC_G... [@ Lista: VTA_ALB_G...
Ficha: VTA_FAC_G... [@ Lista: VTA_FAC_G...
Ficha: VTA_FAC_G... @ Lista: VTA_PED_G...
Ficha: VTA_FAC_G... [@ Lista: VTA_PRE_G...
Ficha: VTA_FAC_G... [# Lista: VTO_COB_C...

Ficha: VTA_FAC_G...

40

velneor

life is soft

Guia de estilo de programacion Velneo

En la carpeta verde (icono Acciones y Menus) incluiremos las acciones, menus y barras de herramientas
asociadas a la tabla. El orden de objetos es el siguiente:

Accion para ejecutar el mend.
Subcarpeta general para todos los menus de botén.
Subcarpeta por cada menu de boton.

(e]

(0]
(€]
(0]
(0]

= Mend.

m Acciones incluidas en el menu.
e Subcarpeta con las toolbars

Toolbar.
Menu.

Acciones usadas en la toolbar o los menus.
Acciones para puntos de insercion.

m VvERP_2 (vatp://c5.velneo.com:36540) - Velneo vDevelop

@ vERP_2_app 23.0.1 X

Identificador
» [m Marco

» B Configuracién
» B Contabilidad

~ s Gestion

» = Almacén

» @ Compras

» I Estadisticas

¥ | Ventas
» W Albaranes de venta
~ @m Facturas de venta

>
»
Al |

Facturas de venta

Facturas de venta

Facturas de venta

© VTA_FAC_G_MEN

= Menus de botones de facturas de venta
~ B Menu de botdn de almacén

[VTA_FAC_G_BTN_ALM

© VTA_FAC_G_LOC_ALM

© VTA_FAC_G_ALT_ALM

© VTA_FAC_G_EDT_ALM

Ment de boton de cliente

Meni de boton de comercial
Ment de bot6n de forma de pago
Ment de bot6n de medio de contacto
Menu de botdn de opciones
Ment de botdn de serie

Ment de botdn de serie contable
oolbars de facturas de venta

E VTA_FAC_G

VTA_FAC_G_TLB_PRT
VTA_FAC_G_PRT_LST
VTA_FAC_G_TLB_MAS
VTA_FAC_G_LST_CON
VTA_FAC_G_LST_DES_CON

-

VTA_FAC_G_LST_FAC
VTA_FAC_G_LST_PDT_CON
VTA_FAC_G_ABO
VTA_FAC_G_VER
VTA_FAC_G_INS
VTA_FAC_G_INS_TAB
VTA_FAC_G_MAS_INS
VTA_FAC_G_MAS_INS_TAB
VTA_FAC_G_PRT_INS
VTA_FAC_G_PRT_INS_TAB

000000000000HOMH

Nombre Entrada

Facturas

Almacén
Localizar
Nuevo
Editar

Facturas de venta

Informes de facturas de venta
Imprimir listado de facturas de venta
Mas opciones de facturas de venta
Contabilizar facturas de venta
Descontabilizar facturas de venta
Facturar seleccionadas

Pendientes de contabilizar

Abonar factura seleccionada

Ver factura de venta

Salida c

Puntos de insercién en todas las toolbars y menus

Si estamos desarrollando un modulo que sirva de nucleo para nuestros desarrollos o un aplicacion
estandar que puede ser heredada por otras personalizaciones para sectores o clientes es importante
afiadir en todas las toolbars y menus un punto de insercién sin origen y en caso de que sea para una tabla
afiadir un segundo punto de insercion con el origen de la tabla.

41

velrm® life is soft

Guia de estilo de programacion Velneo

Identificadores

Los identificadores son una pieza clave en el desarrollo de aplicaciones Velneo. Es el elemento que mas
vamos a utilizar en nuestros desarrollos para hacer referencia a cada objeto, subobjeto o control.

Identificadores cortos y descriptivos

El tamafio del identificador es muy importante no solo por su legibilidad sino porque es el cédigo o
referencia que se utilizara en el resto de puntos de la aplicacién para ejecutar el objeto, subobjeto o hacer
referencia a un control. Por lo tanto aqui el tamafio si importa ya que si utilizamos identificadores muy
largos el tamafio de nuestros proyectos pueden incrementarse notablemente.

¢Por qué usar abreviaturas?

Hay que tener en cuenta que un simple campo puede ser usado cientos de veces. Si su identificador tiene
un tamafio de 50 caracteres estamos hablando de una ocupacion de varios miles de bytes. Para reducir el
tamafio de los identificadores podemos usar abreviaturas que nos aportaran 2 grandes beneficios:

1. Reduccién del tamafio que nos beneficiara en el tamafio de los proyectos.
2. Enel arbol de propiedades poder ver completo el identificador del objeto usado.

¢Por qué conviene usar un diccionario de abreviaturas?

Evidentemente, las abreviaturas también tienen una desventaja y es que debemos de interpretar la
abreviatura para conocer la palabra a la que sustituye. Para facilitar esta labor es conveniente utilizar un
diccionario de abreviaturas.

Ademas, el diccionario nos aporta otra gran ventaja, como es el conseguir que todos los programadores
escribamos igual los identificadores. Precisamente, cuando no se usa un diccionario de términos o
abreviaturas es habitual que cada programador escriba la misma palabra de una forma distinta, por
ejemplo: FACTURAS, FACTURA, FACT, FRA, etc.

En definitiva, un equipo de desarrollo debe contar con un diccionario de abreviaturas que puede estar
almacenado en una aplicacidn, una hoja de calculo o un documento de texto, es muy importante que
cuente con un sistema de busqueda 4gil. Lo fundamental para el equipo es que exista, que se utilice y que
se mantenga actualizado. Es recomendable que al lado de la abreviatura se indique todos los términos que
la utilizaran.

En el diccionario se puede aplicar por convenio el uso de palabras en un solo idioma, todo en Espafiol, todo
en Inglés o también ser menos estricto y utilizar palabras en su mayoria en tu idioma nativo permitiendo
alguna excepcion cuando aporte legibilidad y reduccién de tamafio.

¢Por qué abreviaturas de 3 caracteres?

3 es un numero que nos permite una gran combinacién de caracteres alfanuméricos con un tamafio muy
reducido.

Un problema que nos podemos encontrar con el uso de abreviaturas de 3 caracteres es la coincidencia de

n u

varios términos, por ejemplo IMP se puede usar para los términos “importe”, “importar” y también

42

\[elrE()® life is soft

Guia de estilo de programacion Velneo

“imprimir”. En muchos casos el contexto facilita la interpretacién del significado, es decir si la abreviatura
se escribiese sola, por ejemplo un campo IMP si esta en una tabla de lineas de detalle es facil interpretarlo
como importe antes que importacién o impresién. Sin embargo, en muchos casos los identificadores son
compuestos de varias abreviaturas, de esta forma IMP_TOT es facil interpretarlo como importe total,
SND_IMP como senda de importacién. Incluso para evitar estas coincidencias se pueden usar alteraciones
o abreviaturas estandar del mercado, por ejemplo PRT (print) para imprimir. De esta forma si vemos
VTA_FAC_PRT lo interpretaremos como impresion de la factura de venta.

Es cierto que con 4 caracteres seria mas facil evitar algunas coincidencias como las comentadas
anteriormente, sin embargo la longitud de los campos se dispararia, incluso algunas abreviaturas serian
mas complejas de elaborar ya que cuantos mas caracteres mas decisiones hay que utilizar para la
combinacién de consonantes y vocales. En el ejemplo anterior VNTA_FACT_PRNT seria el mismo
identificador de impresion de facturas de venta con abreviaturas de 4 caracteres, como podemos apreciar
hay palabras dificiles de abreviar como venta que se podria haber abreviado como VENT, VETA, VNTA o
VTAS no siendo ninguna de ellas demasiado satisfactoria.

Recordar 3 abreviaturas de 3 caracteres es mas sencillo que de 4 6 mas. Ademas, a medida que vamos
desarrollando las aplicaciones nos daremos cuenta de que se van construyendo objetos cuyo identificador
es cada vez mas y mas largo para poder expresar de forma concreta y Unica la funcionalidad del mismo.
Por ejemplo para el formulario de detalle de una linea de pedido de venta podriamos encontrarnos con
estas posibilidades:

S

Sin abreviar VENTA_PEDIDO_LINEA_DETALLE
Abreviatura de 4 VNTA_PEDI_LINE_DETA
Abreviatura de 3 VTA_PED_LIN_DET

Ahora imaginate como se llamaria un tubo de ficha que genera una linea de factura de venta a partir de una
linea de pedido.

S

Sin abreviar VENTA_PEDIDO_LINEA_TO_VENTA_FACTURA_LINEA
Abreviatura de 4 VNTA_PEDI_LINE_DETA_TO_VNTA_FACT_LINE
Abreviatura de 3 VTA_PED_LIN_DET_TO_VTA_FAC_LIN

Aplica cada uno de los tipos a todos los identificadores de tu aplicacién y podras comprobar como te
encontraras con objetos cuyos identificadores son extra largos. Sin duda las abreviaturas son un
magnifico recurso para reducir el tamafio y facilitar la legibilidad.

Por ultimo indicar que cuando se establece un maximo de 3 caracteres en las abreviaturas no implica que
todas deban tener ese tamafio, también se admiten abreviaturas de menor tamafio como por ejemplo “A”,
“OK".

43

velrm@ life is soft

Guia de estilo de programacion Velneo

Evita el uso de preposiciones y conjunciones

Estas palabras no deben ser usadas cuando no aportan valor semantico significativo, algo que ocurre en la
mayoria de los casos.

Utiliza el guion bajo como separador de abreviaturas

Velneo no permite el uso de espacios en blanco ni caracteres especiales en los identificadores, por este
motivo esos caracteres son sustituidos de forma automatica por el guién bajo “_". Para facilitar la
legibilidad de los identificadores usaremos el separador entre cada abreviatura.

Sin separador, dificil de leer VTAPEDLINDETTOVTAFACLIN

Con separador, mas facil de leer VTA_PED_LIN_DET_TO_VTA_FAC_LIN

No uses como sufijo de los identificadores el tipo de objeto

Hacerlo tiene 2 desventajas. La primera es aumentar el tamafio del identificador y la segunda es que
estaras aplicando una informacion redundante ya que el tipo de objeto estd representado por su icono y en
la ventana de propiedad se indica el nombre del tipo de objeto.

Propiedades ($82) 100
© VvTA_FAC_G_MEN Accién

Por lo tanto debemos evitar usar identificadores como ACC_VTA_FAC_G_MEN ya que como vemos ademas
de ser mas largo la informacion que aporta es redundante, e incluso lo mas probable es que alli donde se
use tan solo podriamos utilizar objetos de este tipo.

Usa el identificador de la tabla como prefijo de los objetos con ese origen

Una de las caracteristicas de los objetos en Velneo es que disponen de origen y destino (ninguno, ficha o
lista), por este motivo es muy importante poder identificar el origen de cada objeto sin necesidad de revisar
en su propiedad el origen.

Por este motivo es importante que los identificadores de las tablas sean a la vez descriptivos y lo mas
cortos posible.

44

velrm® life is soft

Guia de estilo de programacion Velneo

~ B Gestion

ART_PRV_G Articulos proveedores
COM_ALB_G Albaranes de compra
COM_FAC_G Facturas de compra
COM_PED_G Pedidos de compra
COM_PED_LIN_G Lineas de pedidos de compra

VTA_TAR_ART_G Tarifas por articulo
VTA_TAR_CLI_G Tarifas por cliente

=]

=

=

=

s

S EST_ART_G Estadistica por articulo

€ EST.CLT.G Estadistica por cliente

€ EST.CMR.G Estadistica por comercial
e EST_EJE_G Estadistica por ejercicio

€ EST_PRV_G Estadistica por proveedor
€ EXS_G Existencias

£ INV_VAL_G Inventario valorado

S MOV_G Movimientos de almacén

e TRAG Traspasos entre almacenes
S VTA_ALB_G Albaranes de venta

S VTA_FAC G Facturas de venta

€ VTA_PED_G Pedidos de venta

€ VTA_PED_LIN_G Lineas de pedidos de venta
S VTA_PRE_G Presupuestos de venta

€ VTA_PRE_LIN_G Lineas de presupuestos de venta
€ VTA_TARG Tarifas

-

=

Aplicando el diccionario conseguimos tablas con identificadores de 1 abreviatura y otras 2 y hasta 3
abreviaturas de 3 caracteres. En general no conviene sobrepasar las 3 abreviaturas ya que acabariamos
teniendo identificadores demasiado largos.

Es habitual que haya tablas relacionadas bien por su funcionalidad o porque pertenecen al mismo
submddulo, como por ejemplo “COM” para compras y “VTA” para ventas. En estos casos es conveniente
que el dato “comun” o agrupador sea el de mds peso y se use como prefijo, en nuestro ejemplo es correcto
poner VTA_PED para pedido de venta en lugar de PED_VTA. De esta forma conseguimos que
alfabéticamente las tablas del mismo submaddulo estén juntas. Si no aplicamos este criterio el orden
alfabético producira una organizaciéon mas cadtica.

Usa identificadores que combinen origen y destino para tubos y procesos

Existen objetos en los que es muy importante tanto su origen como su destino. Un caso claro son los
tubos de ficha y lista. En estos objetos es conveniente que el identificador incluya ambas tablas.

[) [?] Inspectores (384)
» =] = =]
Identificador Nombre A

v Y Tubos de ficha

PLF_W_TO_FIC_REG Ficheros de una plantilla
PRS_MEN_W_DUP Duplicar menu dindmico
PRS_OBJ_W_DUP Duplicar persenalizacidon
¥ Y Tubos de lista
Y PRS_OBJ_W_TO_MEM Pasar personalizaciones a tabla en memoria

Y APU_C_TO_PLA_APU Generar plantilla de apunte desde un apunte
Y ASI_C_TO_PLA_ASI Generar cabecera de plantilla de asiento desde asiento
Y COS_C_TO_PLA_COS Convertir coste en plantilla de coste

Y DIS_INF_C_DUP Duplicar disefio de informe

Y PLA_APU_C_TO_APU Generar apunte desde plantilla de apunte

Y PLA_APU_C_DUP Duplicar plantilla de apunte

Y PLA_ASI_C_DUP Duplicar plantilla

Y PLA_COS_C_DUP Duplicar plantilla de coste de apunte

Y PLF_W_DUP Duplica Linea PLF

Y

Y

Y

45

velrm® life is soft

Guia de estilo de programacion Velneo

En el ejemplo podemos apreciar como cuando la tabla de origen y destino son diferentes se separan con la
abreviatura TO. Es cierto que esta en inglés, pero es una abreviatura corta y facil de leer e interpretar.

Podemos apreciar que cuando la tabla de origen y destino es la misma se esta aplicando en este caso el
sufijo _DUP para indicar que el objeto creard un duplicado del registro de origen.

En el dltimo ejemplo el sufijo es _MEM, esto se utiliza para indicar que se generaran los registros de origen
en la misma tabla de destino pero en memoria, en lugar de repetir el identificador completo de la tabla
PRS_OBJ_W_MEM se utiliza solo el sufijo diferencial. Estos casos son bastante excepcionales por lo que si
se aplica la norma aunque el identificador seria mucho mas largo PRS_OBJ_W_TO_PRS_OBJ_W_MEM sigue
siendo igual de valido.

Usa sufijos en los identificadores de las tablas, tablas estaticas y variables globales

El editor no permite que dos tablas tengan el mismo identificador en el mismo proyecto, pero si es posible
crear dos tablas con el mismo identificador en distintos proyectos. Cuando se trabaja con mdltiples
soluciones o multiples proyectos heredados o incluso cuando se trabaja sobre un nicleo comun a todas
las aplicaciones hay que tener especial cuidado en conseguir que no se repita el identificador de una tabla.

El problema se produce cuando al instanciar ambos proyectos se realiza sobre la misma carpeta del disco
produciéndose un conflicto al solo existir una tabla que tiene dos definiciones de estructura diferentes en
los proyectos.

Para evitar esta duplicidad de identificadores es conveniente usar un sufijo diferenciador que permita
poner identificadores a las tablas sin riesgo de caer en la duplicidad. Conviene que esos sufijos tampoco
se repitan. Se puede utilizar el criterio de un sufijo diferente por aplicacion, moédulo, etc.

Como el numero de aplicaciones o moédulos no suele ser muy alto, se pueden utilizar sufijos con una sola
letra, por ejemplo: “_G” para gestién, “_C” para contabilidad, “_M”" para maestros generales, “_W" para
configuracion, etc. En caso que el n° de aplicaciones o médulos sea muy grande se pueden colocar 2 6
mas letras.

Para mantener un criterio unico, se aplicara el mismo criterio de las tablas a las tablas estaticas y también
a las variables globales que tengan una relacion directa con un médulo.

No uses el sufijo de la tabla en los identificadores de campos e indices

Aunque las tablas tengan un sufijo y cuando afiadimos campos a una tabla se crean con el mismo
identificador de la tabla tanto el campo como el indice correspondiente. Por mejorar la legibilidad de los
subobjetos de la tabla: campos, indices y actualizaciones, quitaremos del identificador el sufijo
correspondiente.

Por ejemplo, si la tabla de articulos tiene como identificador “ART_M", las diferentes tablas de lineas de
detalle de compras y ventas tendran un puntero al articulo cuyo campo, indice o actualizacién tendra como
identificador “ART” en lugar de “ART_M".

Excepciones para que los campos punteros a tabla maestra no usen su mismo identificador

Por regla general coincidira el identificador del campo con el de la tabla o tabla estatica apuntada. Es decir,
el campo puntero al articulo se identificara como “ART" ya que su tabla maestra se identifica como

46

velrm® life is soft

Guia de estilo de programacion Velneo

“ART_M".
Sin embargo, se pueden dar circunstancias que no permitan usar el identificador exacto de la tabla:

Si en una misma tabla existen varios punteros a la misma tabla maestra, es légico que el identificador sea
mas explicito, y por lo tanto diferente al de la tabla maestra. Por ejemplo si una entidad puede tener forma
de pago para cobros y forma de pago para pagos, si la tabla de formas de pago se identifica como
“FPG_M", los campos podrian identificarse como “FPG_COB" y “FPG_PAG” respectivamente.

En ocasiones hay tablas que contienen multiples tipos de registros, por ejemplo el caso de la tabla de
entidades o contactos que puede servir para almacenar diferentes tipos de registros como clientes,
proveedores, comerciales, etc. En estos caso se podrian utilizar los siguientes identificadores en la tabla
de factura de venta:

ENT Cliente Desaconsejable si en la tabla pueden existir otros campos punteros a la
entidad como el comercial.

ENT_CLT Cliente Es vélido ya que permite que el comercial tenga como identificador
ENT_CMR.
CLT Cliente Este es el identificador mas corto, pero ademas es el mas explicito ya que

indica el uso del dato y no el origen de la tabla. Para campos de uso
masivo como el de clientes, proveedores, etc. Este identificador puede ser
el mas conveniente.

En cualquier caso debe existir un consenso en el equipo de cual de los 2 dltimos utilizar.

No te preocupes por los identificadores repetidos en el proyecto

Es cierto que si miramos los identificadores de la carpeta de una tabla encontraremos muchas
repeticiones. Sin embargo, esto es algo permitido por el editor de Velneo ya que el identificador “completo
de un objeto viene dado por: El proyecto + el tipo de objeto + el identificador.

”

De esta forma para un mismo proyecto podemos tener objetos con el mismo identificador siempre que
sean de diferente tipo. Esto nos permite utilizar el mismo criterio para todo los objetos sin necesidad de
recurrir a un prefijo o sufijo que lo indique el tipo de objeto.

v B Almacenes

0 ALM_M_MEN Almacenes

O ALM_M Almacén

O ALM_M_MOV Movimientos

O ALM_M_INS

B ALM_M Almacenes

 ALM_M Almacenes

8 ALM_M_SEL Almacenes (Seleccidn)
t= ALM_M Almacenes

t= ALM_M_SEL Almacenes (Seleccién)

47

velrm® life is soft

Guia de estilo de programacion Velneo

Base de datos

La pieza mas importante en el analisis de una aplicacion es sin duda la base de datos. Podriamos afirmar
que un buen disefio de base de datos garantiza rendimiento y mantenibilidad mientras que un mal disefio
nos garantiza problemas que se irdn agravando con el paso del tiempo.

Demos tratar de disefiar nuestra base de datos con la mayor sencillez posible, de lo contrario cualquier
correccion, mejora o evolucidn se convierte en una tarea compleja y por lo tanto mucho mas costosa. A
continuacién vamos a ver algunas buenas practicas a la hora de disefiar la estructura de base de datos de
nuestra aplicacion.

Una base de datos, un responsable

Dada la importancia de la base de datos es fundamental que esté bajo la tutela de un Unico responsable.
Esto no significa que solo una persona pueda hacer cambios, que también puede ser una buena practica,
sino que no deberia de realizarse ningin cambio en la base de datos sin que el responsable esté informado
y valide dicho cambio. Ya que de no hacerse asi corremos el riesgo de que la base de datos contenga
campos que ya no se utilizan pero que nadie se atreve a borrar, indices duplicados en tablas muy grandes
donde es mas dificil controlar todo lo que ya existe, etc. En definitiva, cada base de datos debe tener un
responsable unico.

Esquemas

Crea esquemas para documentar las tablas

Cuando comenzamos a desarrollar una aplicacion lo haremos desarrollando la estructura de base de
datos, para realizar esa tarea es recomendable crear un objeto esquema que nos permitira crear las tablas
de forma visual y ademas dejarlo documentado para en el futuro poder recordar de un vistazo las
relaciones entre las diferentes tablas. El objeto esquema hace bueno el dicho “Una imagen vale mas que
mil palabras”.

Conviene crear las tabla directamente desde el esquema ya que ademas de crear el objeto ya lo dejamos
incrustado en el esquema lo que nos facilitara crear las relaciones de forma visual.

48

velrm® life is soft

Guia de estilo de programacion Velneo

ece [vERP_2 (vatp://c5 .velneo.com:36540) - Velneo vDevelop
© VERP_2.dat23.01 X | A GES X
S=SME® § D Aewen s B U I = :[auw- @& @
S
= reddosdeca = Pecdondo) ¥
5
3

= Lineas de podidos de v}‘ =

Albaranes de ve

= Facturas de cor = Facturas de ve

Crea multiples esquemas

A medida que vamos afiadiendo tablas a nuestro proyecto conviene crear multiples esquemas con el doble
objetivo de evitar tener un esquema con tantas tablas y relaciones que resulta muy complicado ver la
estructura y entenderla, y por otro lado nos permite tener esquemas especificos con la estructura de sub
modulos o funcionalidades especificas, consiguiendo que otros desarrolladores entienda la estructura de
tablas y sus relaciones rapidamente.

Numero de tablas y tamano de registros

¢El nimero de tablas influye en el rendimiento?

Salvo que estemos hablando de miles de tablas, en cuyo caso podria afectarnos en el tiempo de reinicio de
la instancia en el servidor, a nivel de ejecucion hay que tener en cuenta que nos afectan las tablas en uso,
no las declaradas en el proyecto.

¢El tamaiio de registro de una tabla como influye?

Influye en el tamafio de las transacciones, en el n® de conexiones que un cliente tiene que establecer con el
servidor para obtener los datos de una lista de registros y en los tiempos de regeneracion de la tabla ante
un cambio de estructura.

Por lo tanto debemos intentar reducir el tamafio de registro de una tabla en la medida de lo posible. Unas
buenas practicas podrian ser:

e Evita crear campos que no se usan.

e Sise necesitan campos alfabéticos muy largos (>100 caracteres) que se usan en un porcentaje
bajo de registros, puede ser mas éptimo crearlo de tipo objeto texto, de esta forma en el registro
ocupa 8 bytes y en el contenedor las celdas que necesite de 512 bytes.

e Evita la informacién repetida, por ejemplo, intenta no duplicar el nombre de los articulos en las
lineas de movimientos.

e Extrema el tamafio de registros en las tablas que vayan a contener millones de registros.

49

velrm® life is soft

Guia de estilo de programacion Velneo

¢Es mejor tener muchas tablas con un unico tipo de registro o es mejor tener una tnica tabla con
muiltiples tipos de registro?

Si el nimero de registros no es elevado, es decir no contendrd la tabla millones de registros) serd mas
cémodo crear una Unica tabla con un campo que identifique el tipo de registro.

El campo de tipo de registro para que esté bien documentado deberia apuntar a una tabla estatica evitando
asi tener que documentar los valores del mismo por los diferentes lugares de la aplicacién donde se use.

Otro factor a tener en cuenta es el nimero de indices que se van a crear. Si por ejemplo vamos a crear los
tipicos indices de cédigo, nombre, palabras y trozos y tenemos 5 tipos de registros vamos a crear 20
indices. Este valor no es un problema, pero si vamos a tener que crear un nimero alto de indices (>200) tal
vez debemos replantearnos el uso de tablas independientes.

Hay que tener en cuenta que aunque esta tabla tenga muchos indices, estardn condicionados de tal forma
que en cada indice solo encontraremos los registros de un determinado tipo.

Tipos de tablas

¢Cuando es conveniente usar una tabla de tipo maestro arbolada?

Cuando tengamos que representar los registros de dicha tabla en un arbol en el que cada nivel representa
una relacion de herencia entre los registros.

Ejemplo habituales son el plan de cuenta de contabilidad, clasificaciones de familias y subfamilias, etc.

¢Qué tamaiio de campo ID debo usar en una tabla arbolada?

El menor posible que te permita contener el mayor cédigo que se necesita grabar. Es decir, debemos evitar
poner un campo cddigo en el que dejemos un tamafio mayor “por si acaso”.

Hay que tener en cuenta que el tamafio del ID influye en los indices y también en el tamafio de los campos
gue apuntan a esta tabla como maestra. Por lo tanto afecta al rendimiento, cuanto menor sea el codigo
mas rapido se manejara la tabla.

Por este motivo se suelen usar campos alfabéticos “comprimidos” como el Alfa 64 (Ahorro del 25%) y Alfa
40 (Ahorro del 33%) que nos permiten contener mas caracteres en el codigo con una menor ocupacion en
disco.

¢Cuando es conveniente usar tablas de tipo histérico?
Cuando se den las 2 siguientes circunstancias:

1. Latabla no tiene un cédigo Unico que identifique al registro sino que almacena informacién que no
esta codificada, o tiene multiples maestros relacionados, todos ellos con el mismo peso.

2. Latabla nunca sera maestra de otra tabla plural. Esto se debe tener en cuenta para que en el caso
de que exista un plural no nos veamos obligados a incluir multiples campos punteros para resolver
la clave Unica que se haya creada en esta tabla histérica.

¢Y si creo siempre todas las tablas maestras?

Es cierto, que evitar crear tablas histéricas y en su lugar crearlas siempre como maestras nos evita la 22
circunstancia de la pregunta anterior, y es cierto que en la mayoria de los casos nos servira aplicar este
criterio de todas maestros.

50

velrm® life is soft

Guia de estilo de programacion Velneo

Sin embargo, existen algunas excepciones que debemos tener en cuenta.

Si tengo que apuntar a una tabla con punteros indirectos reales usando campos para resolver el indice de
clave que no es el ID, no me sirve de nada que la tabla sea maestra, al contrario me obliga a mantener un
campo y un indice innecesarios.

Si creamos la tabla como maestra y apuntamos a ella a través del cédigo (/D) obteniéndolo con una
bldsqueda por otro de sus indices de clave Unica compuesto por uno o varios campos que no son el ID,
tendré problemas de refactorizacion de datos en el caso de que cambien los campos que componen el
indice de clave, esto me obligaria a tener que programar el control del cambio de valor de dichos campos.
Por ese motivo es preferible apuntar los registros de este tipo de tablas con punteros indirectos que
reaccionan automaticamente al cambio de valores con los que se resuelve el puntero al indice de clave
Unica.

Por ejemplo, una tabla de estadistica cuyo indice de clave unica viene dado por los campos empresa, afio,
mes y cliente, deberiamos apuntar desde la tabla que actualiza sus datos a través de un puntero indirecto
resuelto con campos de la tabla. En este caso definir la tabla como histérica puede ser una buena practica.

¢Cuando es conveniente usar tablas de extension?

Esta tipo de tabla debemos verla siempre como una solucion a un problema que no tenga otras
alternativas y crearla solo cuando no nos quede mas remedio.

Los casos mas habituales son:

1. Tengo que afiadir campos a una tabla que esta en un proyecto (nucleo estéandar) que no puedo o
quiero modificar porque cuando se vuelva a actualizar estaria obligado a repetir los cambios. En
general son personalizaciones para un cliente concreto sobre una tabla estdandar para todos mis
clientes o los de un sector.

2. Cuando tengo una tabla con cientos de miles o millones de registros y hay un grupo de campos
que se usan en un % bajo de registros (<20%) y que hacen crecer el tamafio del registro de forma
significativa, por ejemplo pasamos de un tamafio de registros de 400 bytes a 3.000 bytes.

¢Por qué hay que evitarla en la medida de lo posible? Fundamentalmente para aplicar el principio de
sencillez que facilite su desarrollo y posterior mantenibilidad. Pero no debemos sacar la conclusion de que
no debemos usarla, simplemente usarla con rigor y en los casos en los que sea estrictamente necesario.

¢Cuando es conveniente usar tablas submaestras?

Como su nombre indica es conveniente cuando una tabla tiene una dependencia directa de una tabla
maestra, de tal forma que podemos asegurar que no tiene sentido que exista un registro en la tabla
submaestra sin que exista previamente el registro de la maestra.

Un caso tipico de esta tabla son las tablas de lineas de detalle de las tablas de documentos de compra 'y
ventas.

La ventaja de declarar esta tabla es que el indice ID esta formado por el cédigo de la maestra y el cédigo
numérico de la submaestra que se numera automaticamente. Si el cédigo de la submaestra no es
numérico entonces perdemos esta ventaja y no merece la pena hacerla submaestra.

El otro motivo por el que se desaconseja su uso es que si esta tabla va a tener plurales es mejor usarla de
tipo maestra ya que de lo contrario nos encontraremos que para apuntar a un registro desde otra tabla
plural vamos a necesitar minimo 2 campos (maestro y cédigo).

Por el mismo motivo tampoco es cdmodo crear tablas submaestras de multiples niveles ya que cada vez
el indice ID tiene mas partes y al relacionar otras tablas con esta submaestra se necesitan tantos campos
como partes componen el indice, en cambio con una tabla maestra sabemos que podemos resolver la

51

velrm® life is soft

Guia de estilo de programacion Velneo

relacién con un solo campo.

Campos

A continuacion se detalla en una tabla el uso recomendado de campos de tipo alfabético.

Alfa 256

Alfa 128

Alfa 64

Alfa 40

Alfa Latin1

Alfa UTF-16

Almacenar campos alfanuméricos permitiendo todo tipo de caracteres y longitud
especifica.

Hay que tener en cuenta que aunque soporta hasta 65.535 caracteres no tiene
mucho sentido guardar tanta informacién en un campo de este tipo, siendo
recomendable usar campos objeto texto o texto enriquecido en su lugar.

Para guardar datos alfanuméricos como nombres, direcciones, etc.

Hay que tener en cuenta que no soporta todos los caracteres ASCII por lo que
debemos evitar usarlo para almacenar URLs o eMails por ejemplo, en ese caso es
mejor usar el Alfa 256

Para guardar datos alfanuméricos en mayusculas independientemente de como
los escriba el usuario.

Se usa para guardar textos en mayusculas, referencias o cédigos que usan
caracteres no soportados en los Alfa 40.

Muy recomendable para cédigos alfanumeéricos, referencias, cédigo de barras, etc.

Hay que tener en cuenta que el tamafio minimo siempre debe ser multiplode 2y
que su contenido que se puede grabar en el campo sera multiplo de 3, es decir,
que si quiero poner en un formulario un campo para guardar 4 caracteres este tipo
de campo puede no ser 6ptimo.

Cuando el contenido del campo debamos enviarlo a un servicio o software externo
que tenga ese requisito de codificacion.

También podemos resolver la codificacién en el momento de la exportacién, por
este motivo no es habitual usar este tipo de campo.

Cuando tengamos que incluir contenido en idiomas de doble byte como el Chino.

Hay que tener en cuenta que estos campos ocupan el doble que uno normal, por lo
tanto no debemos poner los campos de las tablas de este tipo si creemos que en
el futuro instalaremos una version para usuarios en Chino ya que estaremos
perjudicando el tamafio de la base de datos y el rendimiento por algo que puede
no llegar a concretarse nunca. Es preferible que llegado el momento hagamos el
cambio de tipo de los campos ya que la refactorizacion automatica hara que el
cambio no produzca ninguna pérdida de datos.

¢Son todos los campos Alfa igual de rapidos?

No, realmente el campo Alfa 256 es el mas rapido en su uso debido a que su contenido se procesa de

52

velrm® life is soft

Guia de estilo de programacion Velneo

forma directa, sin embargo los Alfa 128, Alfa 64 y Alfa 40 utilizan datos comprimidos a nivel de bits.
Realmente el proceso de compresion y descompresion es muy rapido pero a la hora de realizar miles o
millones de operaciones con cadenas es preferible el uso de campos Alfa 256.

¢Puedo usar campos de tipo tiempo para acumular horas, minutos y segundos?

Si, esa es su funcién, pero debemos tener en cuenta que el campo admite hasta un maximo de 24 horas
(un dia), por lo tanto si queremos almacenar tiempo superior a un dia debemos utilizar un campo numérico
donde guardemos los segundos, minutos u horas segun el caso y luego utilizar campos para convertir
esos tiempos a horas:minutos:segundos.

¢Cuando debo utilizar campos de tipo formula?

Los campos férmula son muy recomendables para ahorrar espacio en el tamafio de registro, ya que su
ocupacion en disco es cero.

Debemos tener en cuenta que la férmula se calcula alli donde se solicita el valor del campo, por ese motivo
si vemos que queremos hacer un uso intensivo de ese campo en rejillas o si hay muchas dependencia de
contenidos iniciales como puede ocurrir en tablas de estadisticas con acumulados mensuales (saldos,
existencias, estadisticas, etc.) podemos optar por utilizar campos con persistencia en disco, que aunque
ocupan espacio y aumentan el tamafio del registro, evitan el recalculo del dato ya que se calcula una Unica
vez a través o bien del contenido inicial, de algun evento de tabla o directamente en cédigo del objeto
visual, y nos ahorra volver a calcular en el momento en que se muestra el datos en un informe, rejilla,
formulario, etc.

¢Cuando es recomendable usar campos objeto texto?

Los campos objeto tienen una ocupacion en el registro de 8 bytes en los que se almacena la referencia al
primer bloque de 512 bytes del contenedor de objetos. En el contender todos los contenidos sean texto,
imagenes o ficheros se almacenan en celdas de 512 bytes, cuando un objeto ocupa mas de 512 bytes va
ocupando mas celdas de este tamafo hasta almacenarse en su totalidad, todas las celdas de un objeto
quedan relacionadas e indexadas para un rdpido acceso.

Por lo tanto tenemos que tener claro que si vamos a almacenar un texto con un tamanio fijo menor de 512
bytes, a priori podriamos pensar que un campo alfabético sera mas recomendable, sin embargo eso
dependera del nimero de registros que estén ocupados. Si por ejemplo creamos un campo de 100 bytes
que solo es ocupado en el 10% de los registros de una tabla que tiene 1.000.000 de registros, estariamos
ocupando 100 MB de disco de los que el 90% estaria vacio. Sin embargo, si usamos un campo objeto
tendriamos 8 MB de ocupacion de los 8 bytes del campo mas 100.000 celdas de 512 bytes lo que daria un
total de 520 MB, es decir, la mitad de ocupacion en disco mas la ventaja de que el registros es 92 bytes
mas ligero. Aunque no supone ningun inconveniente tenemos que tener claro que la carga de objetos se
realiza en hilos secundarios ya que no viaja con la informacion del registro.

Otra caracteristica muy interesante de la base de datos de Velneo es que puedes indexar por trozos y/o
palabras los campos objeto texto y objeto texto enriquecido (en este caso la base de datos se encarga de
eliminar las etiquetas HTML de la indexacion). Esta es una caracteristica muy potente, aunque hay que
gestionarla bien ya que la indexacién de textos largos pueden generar millones de entradas en el indice de
los contenedores.

Existen diferentes circunstancias en las que el uso de objeto texto nos va a ayudar a optimizar la
ocupacion de espacio en la base de datos, y por lo tanto el rendimiento en ejecucion de nuestra aplicacion.

53

velrm® life is soft

Guia de estilo de programacion Velneo

Cuando la ocupacion de registros es baja, por ejemplo <10% para tamafios de >100 bytes.
Para evitar crear campos alfabéticos muy grandes (>100 bytes).

Para almacenar contenido variable que puede ser de miles de KB o cientos de MB.

Para evitar la creacidon de campos adicionales configurables. Se explica mas abajo.

Para almacenar contenido HTML usa el objeto texto enriquecido.

Si tengo miles de objetos dibujo o texto ;Los guardo en la base de datos?

Aunque los objetos texto son muy cémodos de usar si lo que queremos almacenar es una gran cantidad
de informacién como puede ser el caso de un gestor de documental en el que podremos almacenar
cientos de miles de documentos de gran tamafio, el mejor planteamiento puede ser no utilizar campos
objeto y en su lugar almacenar de forma externa los ficheros guardando en un campo del registro la senda
o URL de acceso a dicho fichero.

Hacerlo de forma externa nos permite mayor flexibilidad a la hora de almacenar los ficheros clasificados y
organizados en disco por carpetas, a la vez que minimiza el tamafio de nuestra base de datos lo que
facilita su gestidn y reindexacion.

El Unico handicap en este caso es que perdemos la posibilidad de indexar por trozos o palabras los textos,
aunque se pueden usar alternativas como almacenar solo palabras claves en un objeto texto del registro
que nos facilite la localizacion del fichero sin engordar nuestra base de datos con su contenido.

Guarda el contenido de diferentes campos en un solo campo objeto texto

En ocasiones hay aplicaciones muy configurables que permiten a los clientes finales o usuarios afiadir
campos personalizados en algunas tablas. La base de Velneo es estatica en cuanto a su definicidn, es
decir, no podemos cambiar en tiempo de ejecucién la estructura de una tabla afiadiendo nuevos campos.

Para poder simular los campos personalizables se podria pensar en dejar creados, por ejemplo 3 campos
alfabéticos de 50 caracteres, 3 campos numéricos y 3 campos de tipo fecha. Ademads de poco practico ya
que en un momento dado el usuario podria necesitar 4 campos de un determinado tipo y ninguno del resto
supone un gran desperdicio de espacio en disco con miltiples campos vacios.

En su lugar de puede optar por usar un campo objeto texto en el que almacenemos los contenidos de
todos los campos con algun tipo de separador, por ejemplo:

Formato XML. <nombre campo>Contenido del campo</nombre campo>
Formato JSON. { “nombre campo” : “contenido campo” }
Formato CSV. En la primer linea los nombres de campo “nombre campo 1”|"nombre campo
2"|"'nombre campo 3"y en la 22 linea los datos “contenido campo 1”|"contenido campo
2"|"contenido campo 3"

e Salto de linea. El nombre del campo estaria configurado en un campo objeto texto a nivel de
aplicacion o empresa y el contenido de los se guarda cada uno en una linea afiadiendo un salto de
linea después del dato.

uln

De esta forma podemos almacenar multiples valores en un unico campo objeto texto. Evidentemente hay
un trabajo de programacion adicional para poder visualizar esta informacion de forma dindmica en un
formulario o rejilla (usando una tabla en memoria, por ejemplo). Ademas, la indexacién por los valores de

54

velrm® life is soft

Guia de estilo de programacion Velneo

estos campos de forma individual resulta mas compleja.

Contenidos iniciales

Los contenidos iniciales de los campos se evaltiian cuando damos el alta de un registro y cuando hacemos
modificaciones de los datos del registro. Es un gran recurso para el programador y debemos usarlo con
cuidado para no abusar de sus bondades perjudicando el rendimiento de nuestra aplicacion.

Minimiza las dependencias en contenidos iniciales

Una de las grandes ventajas es que el valor de un campo se calcula automaticamente en base al de otros
campos. Esta caracteristica es buena siempre y cuando no abusemos de ella, es decir, si tenemos una
tabla con cientos de campos y creamos unos contenidos iniciales muy dependientes entre si de tal forma
que cualquier cambio en un campo produzca el recalculo de muchas decenas o incluso un centenar de
contenidos iniciales en otros campos podemos detectar lentitud en nuestra aplicacion. Para evitar estos
casos excepcionales podemos renunciar al contenido inicial y hacer los calculos bien en el objeto visual en
1° plano o también en los triggers anterior al alta o modificacidn, evitando que se recalculen de forma
constante y en su lugar conseguir que los calculos solo se realicen una vez.

Cuidado con los contenidos iniciales que dependen de punteros a hermanos contiguos

Cuando usamos hermanos contiguos en los contenidos iniciales debemos tener la precaucién de evitar
célculos en cascada incontrolados. En principio esto no deberia de producirse con contenidos iniciales ya
que solo afectan al registro en curso, sin embargo si que tenemos que tenerlo en cuenta si en lugar de un
campo con persistencia en disco y contenido inicial usamos un campo férmula que utiliza un campo
obtenido a través de un puntero a un hermano contiguo, ya que en ese caso si el campo del registro
apuntado a su vez es una férmula que tira del hermano contiguo lo que estamos provocando es que el
célculo de un campo realiza lecturas y calculos en un nimero de registros incontrolado que puede dar
lugar a calculos de miles de registros.

Para evitar estas circunstancias es preferible usar campos con persistencia en disco y contenidos inciales
o cuyo valor se calcula una Unica vez en un evento de tabla o proceso. Aunque tenemos mayor ocupacion
en disco a cambio obtener un mejor rendimiento de la aplicacion.

Evita el uso de funciones largas o complejas en contenidos inciales

Si tenemos una funcién que realiza un cdlculo complejo que, por ejemplo requiere la lectura de multiples
registros, y usamos esta funcién en contenidos iniciales de campos debemos revisar que no afecta al
rendimiento. Hay que tener en cuenta que los contenidos iniciales aunque estan definidos en la tabla no
siempre se ejecutan en el servidor, al dar el alta desde un formulario se ejecutan en 1° plano, y en el caso
comentado puede producir lentitud en la apertura del formulario o la aparicion del icono de espera cuando
se esté ejecutando el calculo del valor del campo.

Si ademas, a la funcién se le pasan como parametros valores de otros campos, podemos encontrarnos
con que la funcién se ejecuta mdltiples veces al estar en un contenido inicial, para evitar esta circunstancia
debemos evitar su uso en un contenido inicial moviendo la ejecucién de la funcién a los eventos de tabla
anterior a alta y modificacién, o si la aplicacién lo permite directamente en el objeto visual como puede un
formulario de edicién.

55

velrm® life is soft

Guia de estilo de programacion Velneo

Evita siempre que puedas el uso de contenido inicial JavaScript

En los contenidos iniciales de los campos de una tabla podemos utilizar férmulas de cédigo Velneo y
también férmulas JavaScript. Debemos saber que cada vez que se ejecuta una féormula JavaScript es
necesario lanzar un motor de ejecucién y alimentarlo con las clases generales para que disponga de la
informacion del entorno, aunque esta operacion es rapida en términos generales es lo suficientemente
lenta como para notar retardo respecto al calculo de féormulas de cédigo Velneo, por lo tanto debemos usar
féormulas JavaScript con la precaucién de saber que solo se calculara una vez.

Si tenemos varios campos que necesitamos calcular con una férmula JavaScript podemos optimizarlo no
usando la férmula en el contenido inicial y en su lugar ejecutarla en los eventos de tabla anterior al alta 'y
modificacién lanzando un proceso de cédigo JavaScript de origen ficha. De esta forma aseguramos que se
ejecute una unica vez y ademas podemos calcular el valor de multiples campos en el mismo script con lo
que optimizar todos los calculos en una Unica ejecucion del motor de JavaScript.

En las importaciones de millones de registros optimiza el calculo de contenidos iniciales

Cuando estamos importando miles o incluso millones de registros en las tabla Velneo es habitual que los
datos que estamos importando no requieran que se disparen los contenidos iniciales ya que nos llegan
calculados.

Con el fin de optimizar la importacién, debemos sustituir el uso del comando de instruccién “Modificar
campo” por el comando de instruccién “Modificar campo solamente” que se encarga de modificar el valor
del campo pero evitando que se disparen los contenidos iniciales. Si en algin momento necesitamos que
se ejecuten los contenidos iniciales podremos forzarlo ejecutando el comando de instruccién “Calcula
campos dependientes”, este comando se puede ejecutar multiples veces antes de grabar el registro.

indices

Crea siempre los indices de campos punteros a maestros

La base de datos Velneo tiene algunos automatismos realmente interesantes, uno de ellos es la creacién
automatica de los enlaces plurales, este subobjeto es totalmente dindmico y se crea en tiempo de
ejecucién en base a los indices existentes en las tablas, de tal forma que si las primeras partes de un
indice coinciden con el indice ID de una tabla maestra se crea automaticamente el subobjeto enlace plural.
Este subobjeto permite navegar por la informacién desde la tabla maestra a su plural.

Ademas de la navegacién desde el maestro a su plural este subobjeto permite el funcionamiento a otro
automatismo de la base de datos, el despliegue del cambio de cédigo del maestro a sus plurales. Es decir,
si un maestro tiene el cddigo 100 y por algun motivo necesitamos ponerle el codigo 200, al hacerlo la base
de datos de Velneo se encarga de cambiar el cédigo en todas las tablas plurales que apuntan a este
registro maestro.

Para que el cambio de cédigo funcione bien y no nos llevemos ninguna sorpresa es necesario que existe
un enlace plural. Por este motivo es fundamental que creemos siempre un indice en la tabla plural a través
del campo puntero a maestro, en el caso de las tablas submaestras el indice tiene varias partes pero el
funcionamiento es similar. Este indice se crea automaticamente cuando creamos el campo puntero a
maestro con las herramientas del editor de esquemas o con el selector de tabla maestro en el editor de
tabla. Si afladimos el campo manualmente o copiando de otro campo debemos tener la precaucién de

56

velrm® life is soft

Guia de estilo de programacion Velneo

crear el indice.

Debemos tener en cuenta que en muchas ocasiones tenemos indices condicionados, es decir que indexan
a través del campo puntero a maestro pero solo indexan algunos registros, los que cumplen la condicién.
Esto debemos tenerlo presente ya que en ese caso el cambio de cddigo solo se aplicaria en los registros
que cumplen la condicion, pero nos quedarian otros registros con el cddigo antiguo lo que supondria un
gran problema. Por ejemplo, si tenemos la familia A100, y en la tabla de articulos solo tenemos un indice
por familia que indexa los que tienen existencia. Si cambiamos el cédigo de la familia a B200, solo se
cambiaria en los articulos con existencia, quedando erréneamente otros articulos con el cédigo de familia
A100, que en caso de ser reutilizado supondria tener una base de datos errénea. Por este motivo, si
tenemos que crear indices condicionados es conveniente también tener un indice al maestro sin ninguna
condicion, es decir que indexe todos los registros.

Evita el cambio de c6digo de maestro siempre que sea posible

Es cierto que no es habitual cambiar los cddigos ID de las tablas maestras, y en muchos casos ese dato ni

se visualiza en pantalla ni se deja cambiar al usuario, pero en una base de datos existen muchas tablas con
circunstancias “especiales”, por ejemplo tablas cuyos registros nacen de la importacién de informacién de

otro sistema o que son claves que cambian con el tiempo.

Lo mas recomendable en Velneo es crear siempre la tabla maestra con el campo ID y afiadir otros campos
de codigos externos que pueden cambiar, pero dejando siempre como enlace entre el maestro y sus
plurales a través del ID que genera Velneo. Esto es lo mas habitual y recomendable, porque aunque los
articulos tengan referencias o codigos de barras y los clientes tengan un CIF o un DNI siempre serd mas
6ptimo indexar y apuntar a tablas del campo /D numérico que tendrd un maximo de 4 bytes. De esta forma
ganamos espacio y rendimiento.

Si en alguna tabla, por ejemplo de tipo arbolada, necesitamos usar cédigos que nos vienen dados por
terceros, debemos tener en cuenta lo comentado en el punto anterior sobre tener siempre indices en las
tablas plurales sin condicionar que nos aseguren que cualquier cambio en el cédigo del maestro se
aplicard en todos sus plurales.

Evita los indices “duplicados” que tienen la parte izquierda comin

En tablas grandes con muchos campos y muchos indices hay que tener especial precaucion con los
indices que se crean ya que es muy facil crear indices “duplicados” si no tomamos medidas para evitarlo.

¢Qué es un indice duplicado? Obviamente el primer caso de indices duplicados es aquél en que ambos
indices son exactamente iguales, pero también podemos considerar que un indice esta duplicado cuando
sus partes coinciden con las primeras partes de otro indice. Veamos un ejemplo.

57

life is soft

Guia de estilo de programacion Velneo

velneor

Propiedades (382) 1o Propiedades (382) 100
() ART_EMP indce (3] ART_EMP_ALM indice
Descripcion Valor - Descripcién Valor -
¥ Propiedades ¥ Propiedades
Identificador ART_EMP Identificador ART_EMP_ALM
Nombre Articulo y empresa = Nombre Articulo, empresa, almacén, fecha, cédigo
Subobjetos (383) 100 Subobjetos (383) 100
® @ ® | @
Identificador Modo Campo Identificador Modo Campo
& ART Campo compl... ART G ART Campo completo ART
) EMP Campo compl... EMP &) EMP Campo completo EMP
) ALM Campo completo ALM
@ & FCH Campo completo FCH @
) HOR Campo completo HOR
) MOV_TIP Campo completo MOV_TIP
® D Campo completo ID

Es muy habitual que a medida que va creciendo el proyecto se vayan creando nuevos indices, en el ejemplo
anterior es posible que inicialmente se haya creado el indice ART_EMP con esas 2 partes y posteriormente
se cred el indice ART_EMP_ALM con 7 partes, si el responsable de base de la base de datos no tiene
cuidado quedarian los 2 indices creados cuando realmente no es necesario ya que podemos utilizar el
indice ART_EMP_ALM buscando por parte izquierda resolviendo solo el articulo y empresa, obteniendo de
esta forma el mismo resultado que si usamos el indice ART_EMP. Cuando encontremos un caso de estos
nos quedaremos con el indices de mas partes y refactorizaremos los objetos que usaban ART_EMP para
que usen ART_EMP_ALM por parte izquierda o incluso también se puede usar entre limites.

La mejor forma de evitar tener indices duplicados es poner buenos identificadores a los indices para que

expresen bien sus partes y organizar los indices de las tablas por orden alfabético. De esta forma
detectamos facilmente las duplicidades de un vistazo, como se puede apreciar en la siguiente captura.

v [indices

ID Caddigo
&) ALM Almacén
&) ALM_MOV Traspasos entre almacenes
) ALM_TRA Traspaso entre almacenes
®) ART Articulos
=) ART_ALM_ID Articulos, almacén, ID
) ART_EMP Articulo y empresa
) ART_EMP_ALM Articulo, empresa, almacén, fecha, cédigo
) ART_FCH Articulo, empresa, fecha, tipo, cédigo
) ART_PRV Articulos proveedores
®) CLT_ENT Clientes

Es evidente que ver un indice ART_EMP al lado de otro que se llamada ART_EMP_ALM es un claro
indicativo de que puede haber una duplicidad, aunque podria darse la circunstancia de que tengan
diferente condicion de indexacién, algo que deberia reflejarse en el identificador.

¢Cuando usar indices condicionados?

Los indices condicionados son una gran herramienta para el programador. En principio su uso es
totalmente aconsejable ya que con ellos mejoramos el rendimiento de nuestras aplicaciones al evitar
busquedas mas complejas o filtrados.

58

velrm® life is soft

Guia de estilo de programacion Velneo

Es cierto que el tiempo de indexacioén de un indice condicionado es aproximadamente un 30% superior a

un indice sin condicionar, al tener que evaluarse la férmula de la condicién, pero este tiempo ademas de

que solo nos penaliza una Unica vez en el alta, baja o modificacion, es muy pequefio, por lo que podemos
asumirlo sin ningun problema dadas las ventajas que nos aporta.

Siempre que tengamos estados de registros, los indices condicionados son un gran aliado ya que
podemos obtener de forma directa los registros adecuados ordenados en funcién de las partes definidas.
Sin duda alguna una herramienta a tener en cuenta y usar de forma constante.

Hay dos casos en los que no merece la pena crear indices condicionados:

1. Siun indice condicionado solo se usa una vez al afio para un informe concreto, no tiene mucho
sentido crear en la tabla un indice que estarad infrautilizado para ganar unos segundos en un
informe que apenas se utiliza.

2. Sitengo decenas de estados, en lugar de crear decenas de indices condicionados tiene mas
sentido crear un indice por el campo estado y buscar de forma directa un estado.

Los indices acepta repetidas ocupan 4 bytes mas

El tamafio de un indice viene dado por la suma de tamafio de las partes que lo componen, sin embargo en
un indice de tipo acepta repetidas debemos tener en cuenta que Velneo afiade 4 bytes al tamafio del
indice. Esto lo hace porque aunque acepte claves repetidas la base de datos necesita poder apuntar a cada
registro de forma unica. Al afiadir 4 bytes Velneo permite hasta 4.000 millones de repeticiones de una
clave. Es decir que aunque para nosotros a nivel de programacion se aceptan claves duplicadas,
internamente se comporta como si fuese un indice de clave Unica, aunque nosotros como programadores
nunca veremos los 4 bytes adicionales que componen el indice.

Los indices de clave tinica son mas rapidos

A la hora de regenerar una tabla o indexar alguno de sus indices podemos observar que los indices de
clave unica son mas rapidos en estas operaciones que los de acepta repetidas, I6gicamente en este
proceso influye lo comentado en el apartado anterior del control de claves repetidas. Ademas, cuanta
menos repeticion de claves tengamos mas rapido se indexa un indice.

En un indice acepta repetidas el orden de los registros vendra dado por el orden de creacién de dicho
registro, este comportamiento puede ser deseado o no. En caso de que queramos garantizar un orden
especifico conviene afiadir mas partes a nuestro indice, intentando siempre en la medida de los posible
crear el indice con el menor tamafo posible. Por ejemplo, en la tabla de facturas podemos crear un indice
por el cliente de tipo acepta repetidas, pero puede ser mucho mds interesante crearlo con las partes cliente
y fecha, de esta forma cuando carguemos plurales de facturas del cliente nos apareceran ordenadas por
fecha, si ademas en el indice afiadimos el ID o el nimero de la factura y podemos poner el indice de tipo
clave Unica, ademas de ser un indice mas rdpido para la reindexacién conseguiremos que en caso de que
un cliente tenga mds de una factura en la misma fecha salgan ordenadas por nimero.

En definitiva, que es mas recomendable tener indices de clave uUnica para lo cual en las tablas maestras
siempre podremos conseguirlo de forma sencilla afiadiendo el ID como ultima parte del indice.

Usa la longitud y conversion de la parte del indice para reducir el tamaiio
Cuando tenemos que indexar un campo alfabético con un tamafo grande (>50 caracteres) puede ser muy

59

velrm® life is soft

Guia de estilo de programacion Velneo

buena opcioén aplicar una indexacion parcial. Salvo que sea necesario indexar de clave Unica, podemos
utilizar la propiedad longitud para reducir el tamafio del indice.

Descripcion Valor
¥ Propiedades
Identificador NAME

Nombre

Estilos

Comentarios

Modo Campo porcion
Campo NAME
Longitud 12

Conversion Alfa 40

En el ejemplo anterior vemos como al especificar la propiedad longitud en el campo NAME nos permite
reducir el tamafio del indice a 12 bytes. De esta forma solo se indexardn los primeros caracteres del
campo, algo que en la mayoria de las ocasiones no supone ningun problema ya que no es habitual que
coincidan, y en el caso de que coincidan estarian juntos en la lista.

Por otro lado la propiedad conversién nos permite indicar que aunque el campo sea de tipo Alfa 256, a la
hora de indexarlo, en el indice se indexe como Alfa 128, Alfa 64 o Alfa 40 consiguiendo de esta forma que
se puedan encontrar los registros tanto en mindsculas como en mayusculas y sobre todo que con una
longitud de 12 bytes en el indice estemos indexando por los 18 primeros caracteres del campo NAME.

indices de trozos y palabras

Sin duda son los indices mas potentes de la base de datos de Velneo, su gran virtud es la potencia de
bldsqueda su mayor problema es el tamafio en disco y la reindexacion. Por este motivo hay que equilibrar
Su uso.

En tablas con pocos registros no hay ningun problema generar ambos indices, pero en tablas con millones
de registros tenemos que tratar de evitar que el indice nos cause problemas de rendimiento, en algunos
casos puede ser conveniente generar solo el indice por palabras ya que es mucho mas reducido que el de
trozos, pensemos que la palabra “Amortiguador” generaria una Unica entrada en el indice de palabras, pero
10 entradas (Amo, mor, ort, rti, tig, igu, gua, uad, ado, dor) en el indice por trozos, lo que supone una gran
ocupacion en disco y un mayor tiempo de reindexacion.

Debemos evitar siempre crear, siempre que sea posible, varios indices de trozos y palabras. Es decir, no
tiene sentido crear el indice por palabras para el campo nombre y otro indice por palabras para el campo
direccion, en ese caso debemos crear un Unico indice por palabras afiadiendo ambos campos como partes
del mismo indice, ademas de tener menos indices lo que mejora el tiempo de reindexacién ya que solo se
lee el registro una vez para reindexar ambos campos sino que ademas nos permite que el usuario busque
por cualquier de los dos datos a la vez sin tener que pedirle dos datos en pantalla o tener que hacer 2
busquedas y cruzarlas.

Hay que tener en cuenta que podemos incluir en los indices por trozos y palabras campos de tipo objeto
texto y objeto texto enriquecido, en este Ultimo caso Velneo se encarga de quitar las etiquetas HTML e
indexar solo el contenido del campo. Debemos ser precavidos a la hora de indexar este tipo de campos por
trozos o palabras ya que el nimero de entradas en el indice puede ser gigantesco dependiente de lo que
grabemos en dichos campos ya que debemos recordar que son de longitud variable y si el usuario quiere
puede meter en un campo el contenido de un libro. Ademas de la ocupacion en disco, dar de alta un

60

velrm® life is soft

Guia de estilo de programacion Velneo

registro que tenga que indexar un gran volumen de palabras o trozos de palabras puede suponer un
retardo que produzca una mala experiencia para el usuario.

indices complejos

Este tipo de indice como su nombre indica es un objeto sencillo de definir pero con una funcionalidad
realmente compleja que resuelve casos que requieren mucha programacion o que gracias al uso de este
tipo de indice se consiguen unos rendimientos que no podemos alcanzar mediante programacién.

Por cada indice complejo crea cédigo para regenerarlo la primera vez que se instancia

Es muy importante tener en cuenta que aunque los indices complejos se reindexan automaticamente al
cambiar las partes tienen el handicap de que no se indexan la primera vez que se crean, algo que debemos
tener en cuenta si creamos un indice complejo sobre tablas que contienen datos. Una buena practica
consiste en crear el cédigo necesario para forzar su indexacion inicial cuando instalamos la version de
nuestra aplicacion.

// Regenerar indices complejos afiadidos en la 7.16.1

theApp.regenComplexIndex ("velneo verp 2 dat/COM ALB PRV_NOM", false);
theApp.regenComplexIndex ("velneo verp 2 dat/COM FAC PRV _NOM", false);
theApp.regenComplexIndex ("velneo verp 2 dat/COM PED PRV _NOM", false);
theApp.regenComplexIndex ("velneo verp 2 dat/VTA ALB CLT NOM", false);
theApp.regenComplexIndex ("velneo verp 2 dat/VTA FAC CLT NOM", false);
theApp.regenComplexIndex ("velneo verp 2 dat/VTA PED CLT NOM", false);
theApp.regenComplexIndex ("velneo verp 2 dat/VTA PRE CLT NOM", false);

theApp.regenComplexIndex
theApp.regenComplexIndex
theApp.regenComplexIndex
theApp.regenComplexIndex

"velneo verp 2 dat/ENT CTT M", false);
"velneo verp 2 dat/ENT DIR M", false);
"velneo verp 2 dat/ENT PAI M", false);
"velneo verp 2 dat/ENT_REL M", false);

—~ e~ o~

¢Cuando debo usar un indice complejo?

Poder indexar registros de una tabla por datos que se encuentran almacenados en otras tablas nos ayuda
a reducir el tamafio de las tablas al no tener que duplicar informacién redundante para poder indexarla, nos
evita programacién adicional para reflejar los cambios de datos en la tabla donde queremos indexar, sin
embargo, también tiene como pro que regenerar indices complejos de tablas grandes va a requerir tiempo
y puede que mucho espacio en disco, en funcion del tamafio de las partes a indexar.

Ejemplos tipicos de indices complejos son:

e Indexar contactos por sus direcciones, teléfonos, emails.
e Indexar ventas por las palabras del articulo.
e Indexar facturas por los trozos del nombre del cliente.

Por este motivo hay que tener precaucién a la hora de generar indices complejos de tablas con millones de
registros con un indice por trozos o palabras ya que estariamos creando un indice enorme en tamafio y
con un tiempo de reindexacién muy elevado. Esto no quiere decir que no podamos crear un indice
complejo por trozos o palabras del nombre del articulo indexando las lineas de venta, pero si debemos
tener en cuenta el tamafio y la ocupacion para decidir si por ejemplo solo lo generamos por palabras que
serd mucho mas pequefo que si lo hacemos por trozos.

61

velrm® life is soft

Guia de estilo de programacion Velneo

Actualizaciones

Es la caracteristica estrella de las tablas Velneo. Poder actualizar valores en tablas maestras desde sus
plurales sin programar cédigo es muy atractivo, sin duda, pero todavia lo es mas la rapidez de los calculos
que al estar automatizados en el propio sistema Velneo son mas rdpidos que si los programamos
nosotros en procesos o funciones y ademas la fiabilidad de que funcionan bien en todos los casos, aunque
en la definicién solo le digamos lo que tienen que hacer en el alta.

Utiliza actualizaciones siempre que puedas

Dadas sus virtudes no hay duda, siempre que puedas hacer una actualizacion no escribas cédigo en los
eventos de tabla. Es mas, deberias pensarlo al revés, siempre que vayas a escribir c6digo en un evento de
tabla piensa si puedes hacerlo mediante una actualizacion.

Hay que tener en cuenta que a la facilidad de configuracidn de una actualizacion se le une la posibilidad de
condicionarla lo que facilita la realizacion de calculos mas complejos. Aplicando estos criterios, en
muchos casos es preferible hacer actualizaciones en tablas maestras acumulando lineas totales, lineas
servidas, etc. que nos permiten declarar en la tabla maestra un campo que nos indique si ya esta servido o
no en base a los valores de los campos acumulados en vez de escribir cédigo en ningun evento de tabla.

En las actualizaciones por valor absoluto hay que tener en cuenta las bajas

Es habitual usar actualizaciones para almacenar en una tabla maestra los ultimos valores, por ejemplo en
el cliente podriamos guardar la fecha del ultimo pedido. En estos casos tanto en alta como en
modificacién no hay problema a la hora de condicionar la actualizacidn y dejar el valor correcto en el
maestro, sin embargo cuando damos la baja de un pedido que era el dltimo de un cliente nos
encontraremos de que no podemos actualizar la fecha del dltimo pedido, salvo que tengamos un puntero a
hermano contiguo o un singular de plural que nos facilite obtener dicho dato. Este caso debemos tenerlo
en cuenta para en el trigger posterior a la baja ejecutar un cédigo que se encargue de buscar el ultimo
pedido del cliente y actualizar su fecha.

Crea solo una actualizacion por tabla

Si tenemos que actualizar mas de un campo en la tabla maestra no tiene ninguin sentido crear una
actualizacion para cada campo. Esto ademads de hacer crecer el tamafio de nuestro proyecto es peor a
nivel de rendimiento porque obliga a ejecutar varias actualizaciones contra el mismo registro. Por lo tanto
siempre que tengamos que hacer actualizaciones a una tabla maestra debemos incluir en la misma tantos
componentes de actualizacién como sean necesarios.

62

velneor

Propiedades (362)
VTA_FAC

Descripcion

¥ Propiedades
Identificador
Nombre
Estilos

Comentarios

life is soft

Guia de estilo de programacion Velneo

100

Actualizacion

Valor -

VTA_FAC
Factura de venta

Campo enlazado VTA_FAC

») Componentes ... -

Subobjetos (3£3)

Identificador
NUM_LIN
NUM_LIN_ABO
BAS_GEN
BAS_RED
BAS_SUP
BAS_ESP
BAS_EXE
BAS_RET_ALQ
BAS_RET_IRP

Utiliza actualizaciones condicionadas

100

Nombre

Numero Lineas

NUmero Lineas A...

Base general

Base reducida @
Base sUper redu...

Base especial

Base exenta

Base retenciéna.. A
Base retencion I... s

La versatilidad de las actualizaciones se ve potenciada con la posibilidad de utilizar condiciones. El
principal motivo es que Velneo es capaz de actualizar en funcién de la condicién de forma automatica, es
decir, que si se cumple la condicién aplica la actualizacion y si deja de cumplirse aplica la actualizacién
contraria, y lo mas importante sin programar lo que reduce la posibilidad de errores del programador.

Por ejemplo si condicionamos una actualizacion del n°® de lineas recibidas de un pedido a que la linea esté
recibida o cancelada, cuando se cumple la condicion se suma 1 al campo de la tabla maestra, sin embargo,
al cambiar la condicién si ya no se cumple se resta 1.

Propiedades (882)
] NUM_LIN_REC

Descripcion

¥ Propiedades
Identificador
Nombre
Estilos
Comentarios

Condicién para...

Campo
Modo

Férmula

100

Componente actualizacion

Valor -

NUM_LIN_REC
N° lineas recibidas

Solo cuando esta totalmente recibida o cancelada
#REC | #CNC

NUM_LIN_REC

Acumular

1

63

velrm® life is soft

Guia de estilo de programacion Velneo

Por este motivo es conveniente pensar si podemos crear una actualizacién antes de escribir cédigo.

No utilices variables locales en la condicion o formula de las actualizaciones

Aunque las tablas permite declarar variables locales cuyo valor podemos alterar y usar en todos los
eventos de tabla, por el momento Velneo no es capaz de usar el valor de esas variables locales en las
actualizaciones, ni en la férmula del valor ni en la condicién para modificar.

Hay que tenerlo en cuenta porque el editor si nos permite usarlas en las férmulas, pero en ejecucion no
funcionara.

Evita complejas actualizaciones encadenadas que puedan ocasionar conflictos por bloqueo

Con las grandes virtudes que tienen las actualizaciones es l6gico usarlas masivamente y con total
tranquilidad.

Sin embargo, de la misma forma que nos puede ocurrir con los contenidos iniciales de campos donde
podemos por mala definicién crear un cdlculo recursivo, en las actualizaciones nos puede pasar lo mismo.
Por ejemplo, podriamos cometer el error de que la tabla A actualiza la tabla B, |a tabla B actualiza la tabla C
y la tabla C actualiza la tabla A produciendo un error por recursividad ya que tras la modificacién de la tabla
C ala A volveria a empezar el ciclo. Sin duda se trataria de un error de programacién que seguramente
podemos evitar aplicando condiciones a las actualizaciones para evitar que ejecute mas de un ciclo.

Eventos de tabla o triggers

No modifiques datos en el trigger posterior

Aunque parezca de perogrullo, lo cierto es que a veces ocurre que por despiste o por copia/pega puedes
ver codigo en un trigger posterior al alta o modificaciéon tratando de modificar el registro que acaba de ser
creado o modificado.

Lo peor de todo es que si el programador trata de ver el valor de los campos modificados obtendra que la
ficha en memoria ha cambiado y puede considerar que la programacion es correcta, sin embargo,
debemos tener presente que en el trigger posterior ya que no se cambia la ficha en disco, por mucho que
cambiemos los valores de los campos en la ficha en memoria.

No dejes eventos de tabla vacios

Existen hasta 9 posibles eventos de tabla diferentes y en ocasiones se crean con un cédigo que
posteriormente se modifica o incluso se elimina. Debemos tratar de dejar siempre nuestro cédigo lo mas
limpio posible, y si quitamos todas las lineas de un evento de tabla, debemos eliminarlo ya que de lo
contrario estamos dejando un subobjeto que ademas de ocupar espacio también consume tiempo de
ejecucion al tener que evaluarlo al producirse una operacion transaccional en la tabla.

64

velrm® life is soft

Guia de estilo de programacion Velneo

Variables globales

Este objeto de datos puede ser de dos tipos segun su persistente, en disco o0 en memoria.

Uso controlado de las variables globales en disco

La gran virtud de una variable global en disco es la sencillez con la que se declara y que esta accesible a
todos los dmbitos de la aplicacion.

Debido a que su funcionamientos es similar al de una tabla por lo que cada vez que hacemos referencia a
una variable global en disco en una féormula o comando de instruccién ejecutados en el cliente estamos
provocando una conexion al servidor para solicitar el valor actual. Por lo tanto debemos usarla con mucha
precaucién sobre todo en aplicaciones que se van a ejecutar en el Cloud.

Esto no es 6ptimo por lo que en muchos casos es preferible usar una tabla de configuracién con un solo
registro en el que incluimos los campos que deseamos compartir por todos los usuarios. La ventaja de la
tabla es que una vez cacheada en memoria su lectura no requiere conexién al servidor y si hay cambios el
refresco en tercer plano se encarga de actualizarla.

Otra posible optimizacion es crear una variable global en memoria que rellenamos al arrancar la aplicacion
con el valor de la variable global en disco, por lo que reducimos el nimero de conexiones al servidor a una.
Sin embargo, esto solo es valido si no necesitamos tener su valor actualizado en caso de que haya
cambiado.

Las variables globales son compartidas

Las variables globales en disco con compartidas por todos los usuarios, sin embargo las variables
globales en memoria son compartidas exclusivamente por el cliente que las ejecuta.

Si en una misma magquina ejecutamos varios vClient, cada vClient tendra su propia instancia de las
variables en memoria, esa instancia de la variable es compartida para todos los objetos de la aplicacion de
ese vClient, pero no sera visible para el resto de vClient.

Debemos tener en cuenta que en el servidor también se crean variables globales en memoria por lo que
podemos usarlas para compartir informacioén entre todos los usuarios teniendo siempre presente que el
valor de esa variable se perdera en el reinicio del Velneo vServer. Estas variables pueden ser interesantes
para contener informacion en curso como podria ser el caso de las sesiones web conectadas en una
aplicacion que devuelva contenido para web.

65

velrm@ life is soft

Guia de estilo de programacion Velneo

Constantes

Como su nombre indica este objeto esta destinado a almacenar valores fijos que no podran alterarse en
tiempo de ejecucion.

Usa constantes para todos los textos que puedan requerir traduccién

Cuando escribimos textos en las propiedades de los objetos, subobjetos y controles de nuestra aplicacion
dependiendo del tipo de propiedad se pueden traducir directamente con el componente de la plataforma
Velneo vTranslator, sin embargo los textos escritos en férmulas no se pueden traducir, con el fin de
facilitar la traduccién de todos los textos es recomendable utilizar constantes en todos los textos usados
en férmulas.

E& Rem (Verificaciones)

v [If (#ART =0)
[LJ Mensaje (~ERR_ART@VERP_2_app.app, Informaciodn, ,)
® Interfaz: Establecer foco (ART)
£3 Finalizar proceso

v ZJIf (#PRV =0)
[LJ Mensaje (~ERR_PRV@VERP_2_app.app, Informaciodn, ,)
@ Interfaz: Establecer foco (PRV)
£ Finalizar proceso

Organiza las constantes por su uso

A medida que va creciendo una aplicacién se hace necesario organizar las constantes que vamos
declarando, una posible organizacién es la que vemos en la siguiente captura.

¥ [Constantes
v B Errores

» 9 ErroresdelaAalaD

» BB ErroresdelaEalaF

» o ErroresdelaGalal

» I ErroresdelaMalaR

» o ErroresdelaSalaZz

» BB Mensajes

» @ Preguntas

b BB Textos

En la tabla siguiente se muestran las agrupaciones mas habituales de constantes asi como el prefijo
utilizado:

Errores ERR_ Utilizadas en los mensajes de error de las diferentes verificaciones.

Mensajes MSG_ Utilizadas para los textos que visualizan en mensajes informativos.

66

velrm® life is soft

Guia de estilo de programacion Velneo

Preguntas PRG_ Utilizadas para contener los textos usados en preguntas y
confirmaciones.

Textos TXT_ Utilizadas para contener textos de uso general como nombres de
tablas u otros términos.

Dentro de cada carpeta las constantes se organizan alfabéticamente. En el caso de que tenemos muchas
(>30) constantes podemos crear subcarpetas como vemos en la imagen superior para agruparlas segun
su letra inicial del identificador.

67

velrm® life is soft

Guia de estilo de programacion Velneo

Imagenes

Lo primero que tenemos que tener claro es que en muchos proyectos el mayor tamafio viene dado por las
imagenes incluidas en el mismo. Las imagenes son un gran recurso, pero mal utilizado puede ser un gran
enemigo a la hora de tener proyectos con un tamanio reducido.

Reduce el nimero

Como programadores nos gusta disponer de recursos graficos para aplicar como iconos para botones,
toolbars, etc. Por ese motivo tendemos a afiadir a nuestros proyectos todos los iconos que consideramos
de uso habitual en las aplicaciones. El objetivo es noble, pero la realidad es bien distinta, todo lo que no se
usa sobra, por lo tanto deja solo en tus proyectos las imagenes que realmente usas y elimina las que no
utilices. La excusa del “por si acaso” no es valida, no hay ningun problema en afiadir una imagen o icono en
el momento que la necesites.

No incluyas las imagenes a través del portapapeles

Cuando incluimos imagenes en nuestros proyectos debemos tratar de importarlas siempre directamente
de un fichero en disco, es la mejor forma de garantizar que la estamos importando con las optimizaciones
adecuadas. Si por ejemplo copiamos una imagen al portapapeles lo mas probable es que su formato sufra
una conversion que nos haga perder toda optimizacion que hayamos realizado.

Optimiza las imagenes antes de importarlas

Cuando vayamos a importar una imagen o icono en nuestro proyecto antes de importarla es recomendable
pasarla previamente por un sistema de optimizacién que reduzca su paleta de colores o tamafio. De esta
forma podemos ganar cientos de bytes que siempre son de agradecer para conseguir proyectos del menor
tamanio posible lo que agiliza su almacenamiento y el envio del mismo por Internet. Existe multitud de
aplicaciones y servicios online para hacerlo como por ejemplo tinypng.com que nos permite arrastrary
soltar multiples imagenes de diferentes formatos y que son optimizadas individualmente para su
descarga.

68

https://tinypng.com/

velrm® life is soft

Guia de estilo de programacion Velneo

HOME PHOTOSHOP DEVELOPER API ANALYZER LOGIN

Drop your .png or .jpg files here!
Up to 20 images, max 5 MB each

Smart PNG and JPEG compression

Optimize your images with a perfect balance in quality and file size. °
What does TinyPNG do? Why should | use TinyPNG? Q‘
Introducin, £,
TinyPNG uses smart lossy compression PNG is useful because it’'s the only widely) g v
techniques to reduce the file size of your supported format that can store partially TInyPNG Pro
PNG files. By selectively decreasing the transparent images. The format uses
i N .) All your files at once

number of colors in the image, fewer bytes are compression, but the files can still be large.

e 3 - o 25 MB upload limit
required to store the data. The effect is nearly Use TinyPNG to shrink images for your apps
invisible but it makes a very large difference in and sites. It will use less bandwidth and load Go P

Go Prol
file size! faster. b
Bl doi A

¢Doénde ubicar los objetos dibujo?

Si son imagenes o iconos que vamos a usar en esquemas o acciones definidas en el proyecto de datos no
nos queda mas remedio que ubicarlas en el proyecto de datos.

Si son imagenes o iconos que vamos a usar la interfaz parece mas l6gico ubicarlas en el proyecto de
aplicacion ya que de forma natural trataremos de localizarlas en el mismo proyecto donde estamos
creando la interfaz. Si el nimero de imagenes es reducido no merece la pena pensar en ubicarlo en el
proyecto de datos.

Si nuestro proyecto requiere el uso de cientos de imagenes o iconos y queremos “adelgazar” nuestro
proyecto de aplicacion, podemos almacenarlas en el proyecto de datos que habitualmente ocupa una
décima parte del tamafio del proyecto de aplicacién, consiguiendo asi reducir el tamafio del proyecto de
aplicacion sin que la penalizacién del proyecto de datos que suele cambiar mucho menos sea un
problema.

Evita la informacion redundante, icono y texto juntos no siempre tienen sentido

Cuando aplicamos un sistema de disefio conseguimos unicidad en nuestra aplicacion, es decir, que el
usuario vea que toda la aplicacién se comporta igual y tiene una interfaz homogénea. Uno de los aspectos
a considerar por el disefiador es en que casos se aplicaran iconos, cuando llevaran solo texto y cuando
deben llevar ambos datos.

Si un icono es muy representativo no necesita de texto, por ese motivo en la toolbars se pueden llegar a
utilizar solo iconos sin que el usuario tenga necesidad de mds explicaciones para reconocerlos. Debemos
tener en cuenta que un texto se lee y se entiende mientras que una imagen requiere interpretacion.

+ &

En el caso de los botones es habitual tener que usar texto ya que no siempre es facil representar su
significado mediante iconos, por ese motivo puede ser mas coherente no usar iconos en ningdn botén

69

velrm® life is soft

Guia de estilo de programacion Velneo

aunque muchos podrian tener un icono facilmente reconocible.

Eliminar Aceptar Cancelar Opciones

En los menus el texto se hace necesario por lo que el uso del icono deberia estar bastante justificado ya
que de lo contrario estaria metiendo ruido al ser informacion redundante respecto al texto.

Inicio

« Ventas Empresas
Presupuestos Grupos de usuarios
: Usuarios
Pedidos uart
Albaranes API key
Config. de aplicacién
Facturas
CSS
Cobros Diccionario permisos
Remesas de cobros Informes personalizables
» Compras Menus dindmicos
Al , Personalizacién de rejillas y formularios
4 macen Plantillas de ficheros
» Maestros Scripts
Contabilidad -
ontapriod Utilidades >
Salir

En los combobox se pueden usar iconos cuando representan informacién rdpida de leer para el usuario, ya
que de lo contrario también caemos en la redundancia, por ese motivo entre poner solo icono o solo texto,
tiene mas sentido usar solo texto.

Aceptado

Rechazado

Es cierto que para representar informacion de estados en una rejilla si puede ser mas (til el icono debido a
gue ocupa menos espacio que el texto, pero siempre y cuando el icono no requiera ninguna explicacion.
Por ejemplo, un circulo verde = servido y un circulo, rojo = pendiente es algo que como programadores nos
parece légico, pero que el usuario debe interpretar, es evidente que con el tiempo se acostumbrara a los
colores y su significado pero no es algo estandar que ya esté preestablecido.

Utiliza una libreria de iconos homogénea

La iconografia de la aplicacién debemos cuidarla tanto como cualquier otro aspecto de la interfaz. Debe
ser homogénea, es decir, no debemos buscar iconos por internet y mezclar iconos de diferentes librerias
porque se nota y queda muy mal, da una sensacién de aplicacion descuidada.

No utilices iconos de diferentes tamafios para los mismos contextos, si pones iconos en las toolbars todos
deben tener el mismo tamafio, y lo mismo debes hacerlo en los botones, menus, pestaiias, etc.

No te compliques la vida buscando librerias con miles de iconos espectaculares porque los iconos no
deben ser “bonitos” sino que deben ser faciles de interpretar y en este apartado los iconos mas elaborados
y con mas colores cumplen peor esta funcién. Fijate en las sefiales de trafico como utilizan muy pocos
colores y usan imdagenes sencillas, faciles de interpretar en muy poco tiempo.

70

velrm® life is soft

Guia de estilo de programacion Velneo

Si tenemos claro el objetivo que deben cumplir los iconos encontraremos que las librerias con iconos mas
sencillos y de un solo color estan triunfando en la web, las aplicaciones para méviles y en las de escritorio
mas modernas.

Material Design Icons de Google es una gran libreria que cuenta con miles de iconos y que ademas
podremos extender con otras muchas librerias gratuitas y de pago que han sido desarrolladas con el
mismo sistema y que por lo tanto podremos combinar sin que se aprecien diferencias de estilo.

En esta pagina web contamos con un buscador que nos facilita localizar iconos. Una de las grandes
ventajas de esta libreria es que cualquier usuario que tenga un mévil Android o que use aplicaciones de
Google en iOS se sentird comodo porque en muchos casos lo reconocera de forma directa.

® © ® | [§ Material Design Icons x Jesis

& C & Esseguro https://materialdesignicons.com ww i

1% Material Design Icons Ostar 4045) 3]

Hello! Need some icons? Have a look below. The | orange |icons are from the community. B Download

2 View the Contributors ~ [Getting Started B Custom m ® +-
Search... Tage +
) v [NOVA
RERE Eg2L O~
5 % e 5 * % E Material Icons
o F D fe g &
g a & a] Iﬁ. S M @ (o) _(e

Material Design Icons' growing icon collection allows designers and It's teamwork, but simpler,
more pleasant and more
developers targeting various platforms to download icons in the format, a slack productive.
. ads via Carbon
color and size they need for any project.

@ @ 2 &2 A @ H O+ 6 & & a4of| 2o
N S N N R R - S SRR S R
© % ® 4+ 4+ x > 0 ® T & © 8 ©
® 0 B 0 © & 0 # A co @& o e O
a = & @ § m A B @ W & & s
Ze S N D Y- S B ST N TR -

Una de las ventajas de esta pagina web es que cuando seleccionamos un icono accedemos a una pdgina
gue nos permite exportarlo a diferentes formatos.

71

https://materialdesignicons.com/

veerO® life is soft

Guia de estilo de programacion Velneo

E account-card-details

Christopher Schreiner @infanf &

Description

E E E Account Card Details.

Tags: Account/ User

Aliases: identification-card user-card-details

Advanced Export >~ Icon Package ~

Y ademas con el boton Advanced Export podremos acceder a un editor que nos permitira realizar multiples
configuracion del icono tanto en tamafio como en colores de fondo, primer plano, padding y radio.

E account-card-details

Christopher Schreiner @infanf &

24x24 Size Padding Corner Radius
24 24 48 [o m

Size

12 [] 256
Padding

0o @ 116
Corner Radius

o @ 12

Foreground Background

#FFFFFF ﬂ 255 E 255 H 255 #000000 a 0 a 0 E 0

Custom Name Work in Progress
Only single icon downloads for 'Advanced
Export' are supported at this time.

Basic Export <>~ B Icon Package ~

account-card-details

72

velrm® life is soft

Guia de estilo de programacion Velneo

Tras configurar el icono a nuestro gusto podemos aplicarle un nombre al icono y exportar con el boton
Icon, o incluso podemos exportarlo en formato SVG.

Utiliza iconos para dar soporte a High DPI

Un aspecto que debemos tener en cuenta en el desarrollo de nuestras aplicaciones es que los dispositivos
actuales y mas aun en el futuro tienen resoluciones mucho mas altas que el FullHD (1920x1080), los
dispositivos méviles, tabletas de alta resolucién e incluso las pantalla con resoluciéon 4K empiezan a ser
mas habituales, por este motivo no podemos incluir en nuestra aplicacion iconos de 16x16 o 32x32 ya que
en estas pantallas se veran pixelados. Para resolver este problema debemos incluir en nuestra aplicacién
iconos con una resolucién de 64x64 o 96x96 para tener cubiertas futuras resoluciones.

CSS

Uno de los aspectos mas importantes en el desarrollo de una interfaz de una aplicacién es disponer de la
posibilidad de aplicar cambios en el disefio de forma global, sin estar obligados a realizar cambios de
forma manual en todos los objetos de interfaz de nuestra aplicacién.

Las CSS nos permiten en Velneo cambiar de forma sencilla y rdpida aspectos de la interfaz tan
importantes como los colores, tipografia, tamafos, margenes, iconos, etc.

Para crear unas CSS coherentes es necesario usar un sistema de disefio que nos facilite su creacion. Asi
que lo primero que debemos hacer es crear nuestro propio sistema de disefio o seleccionar uno ya
existente para aplicarlo en nuestros desarrollos.

¢Qué es un sistema de disefio?

“Un sistema de disefio es un conjunto de reglas que organizan, dan consistencia y armonia a un entorno
complejo y variable de contenido y funcionalidad.

Para que un sistema sea tal, es importante que cumpla algunas premisas: que sea escalable, que su unidad
minima se base en una certeza, que sea recursivo en sus formas y proporciones, que regule no sélo la forma
y comportamiento de los objetos sino también las relaciones entre ellos, que sea eficiente, predecible y
sometedor. Esto es, que una vez definido, obligue a todo contenido o funcionalidad a existir bajo sus propias
reglas.”

Javier Cafada (Director de disefio)

Una de las tareas mas importantes de las personas que trabajan en disefio de producto, ya sean el gestor
de producto o un disefiador de producto, es crear un sistema de disefio coherente para el producto que se
adapte a los diferentes canales en los que va a vivir (producto fisico, producto digital, carteleria fisica,
banners para los diferentes canales digitales, etc...).

73

velrm@ life is soft

Guia de estilo de programacion Velneo

o (e
| |
| | ®
LCoImTuite]

Option Option

Second option Second option

Ps T Text link Third option Third option
o O . Text link Button
o = @ @ Text link Second option
Third option

¢Por qué es tan importante tener un sistema de diseiio?

Tener un sistema de disefio coherente, ya sea de creacidn propia o adaptado a partir de alguno
preexistente, es una buena manera tanto de tener un sistema consistente para el usuario, asi como una
manera de enganchar facilmente a nuevos miembros del equipo de trabajo y que se adapten a nuestra
forma de trabajar de una manera répida y sencilla.

En Velneo actualmente estamos utilizando el siguiente sistema.

==
= oot o
Colores Tipografias Elementos
2 months ago 2 months ago 2 months ago

Sistema de disefio. Colores

El sistema especifica los colores que podemos usar en nuestra aplicacion, no debemos salirnos de esta
paleta de colores y hay que combinarlos de la forma adecuada para conseguir una interfaz limpia, sencilla
y a la vez elegante para el usuario.

74

velrm® life is soft

Guia de estilo de programacion Velneo

COLORES

Grey 800 indigo 700 / Acento Red 700 Orange 500 Green 500
Grey 600 indigo 100

Grey 300

White / Grey 200 White / Indigo 700

White / Grey 600

A continuacién se detallan los colores con su valor hexadecimal.

Nombre color Color hexadecimal

Grey 800 #424242
Grey 600 #757575
Grey 300 #EOEQEOQ
Indigo 700 / Acento #3F51B5
Indigo 100 #C5CAE9
Red 700 #D32F2F
Orange 500 #FF9800
Green 500 #4CAF50
White / Grey 200 border: 1px solid #EOEQEOQ;
White / Indigo 700 border: 1px solid #3F51B5;

75

velrm® life is soft

Guia de estilo de programacion Velneo

White / Gray 600 border: 1px solid #757575;

Como podemos apreciar se usan las paletas de colores de Material design para combinar colores con
coherencia.

® © @ 5] Meterial Design Icons | ™= Color - Style - Material Design x Jestis

< C @ Esseguro ial.io/guidelir F lor-pal -

(Q) MATERIAL DESIGN Style - Color

Material Design

Color palette

Motion
style The color palette
Color This color palette comprises primary and accent colors that can be used for illustration or to develop your brand colors. They've
Icens. been designed to werk harmoniously with each other. The color palette starts with primary colors and fills in the spectrum to create
Imagery 2 complete and usable palette for Android, Web, and i0S. Google suggests using the 500 olors as the primary colors i your app
and the other colors as accents colors.
Typography
Writing Themes enable consistent app styling through surface shades, shadow depth, and ink opacity.
Layout
4 ¥ Download color swatches
Companents 0.02 M8 (=Ip)
Patterns

Purple

Growth & communications.

Usability
#F44336 #E91E63 #9C27B0
Platforms
50 #FFEBEE 50 #FCEEC 50 #F3ESFS
Resources
100 #FFCDD2 100 #F8BEDO 100 #E1BEE7

#BAGECS

#EF5350 #EC407A #AB4TBC

#FA4336 #E91E63 #9C27B0

#E53935 #D81B60 6 #BE24AA

#D3 #C21858 #7B1FA2

Site feedback Privacy Terms

4069290

Sistema de disefo. Tipografia
El sistema también define las tipografias que podremos usar en la interfaz de la aplicacion.

76

https://material.io/guidelines/style/color.html#

velrm® life is soft

Guia de estilo de programacion Velneo

TIPOGRAFIAS

Text base GREY 800 / AAA Tit base GREY 600 / AAA

Text base bold GREY 800 / AAA

Text base GREY 800 / AA Tit base RED 700 / AAA

Text base GREY 600 / AA
TEXT BASE INDIGO 700 / AA

Text base RED 700 / AA

Text base GREY 800 / AAA
Text base GREY 800 / AAA
Text base WHITE / AAA

Text base WHITE / AA

Text base GREY 600 / X

Si nos fijamos el sistema no especifica una tipografia en concreto, esto es debido a que como Velneo es
multiplataforma utilizaremos en la fuente de sistema, que es la propuesta por defecto. La ventaja es que
esa fuente siempre existe en el sistema del usuario final y no es necesario realizar ninguna instalacion
adicional. Ademas, conseguimos que la interfaz se vera igual en desarrollo que en produccién.

Los tamafios especificados en el sistema son:

e Los textos tanto estaticos como de edicién son de 12px.
o Seusa el color GREY 600 para los textos estaticos.
o Seusa el color GREY 800 para la edicion.

e Los titulos (Tit) utilizaran un tamafio de 24px.

Sistema de disefio. Unidad minima

Uno de los aspectos clave del sistema es la unidad minima. Es decir, el tamafio base para su aplicacién en
el tamafio de todos los controles. En el sistema Velneo la unidad minima es de 10x10 pixeles lo que
significa que todos los controles, formularios, columnas, etc. seran multiplos de 10 en su alto o ancho.

77

velrm® life is soft

Guia de estilo de programacion Velneo

UNIDAD MINIMA

Se establece como unidad minima de
la reticula 10x10 pixeles

La ventaja de usar un multiplo de 10 es que es muy sencillo de calcular y también de aplicar ya que la
cuadricula del editor de formularios esté disefiada en base a esa misma unidad de referencia 10x10.

0 FORMULARIO X

Por este motivo siempre recomendamos disefiar los formularios con la cuadricula activa, de esta forma
todos los controles se pueden afiadir y ubicar facilmente manteniendo las alineaciones correctas y

precisas.

Sistema de diseiio. Unidad de referencia
La unidad de referencia es la base para el célculo de las dimensiones de los controles, formularios y
columnas de nuestra aplicacion.

En concreto el sistema Velneo utiliza la unidad 120x30, es decir 120 pixeles de ancho por 30 de alto. Si
vemos las aplicaciones desarrolladas a partir de este sistema encontraremos que los botones tienen todos
estas dimensiones. Sin embargo, podemos encontrar botones que tengan un tamario diferente debido a
que el texto a mostrar es largo y necesita un tamafio mayor o mdas pequefios si hay que ubicar muchos
botones en un mismo area. Para esas excepciones se aplicaran tamafios basados en la referencia
aplicando un factor de multiplicacién divisién segun queramos hacerlo mas grande o mas pequefio, es
decir que podemos tener botones de tamafio 60, 30 o 240 que siguen aplicando el criterio de la unidad de
referencia.

78

velrm® life is soft

Guia de estilo de programacion Velneo

UNIDAD DE REFERENCIA

Se establece como unidad de referencia
120x30 pixeles.

Esta unidad de referencia se debera repetir
en mayor medida por la interfaz.

En caso de necesidad es posible hacer crecer
esta unidad multiplicando por x2 x3 x4 x5,
etc... pero solo sera posible hacerla decrecer
entre /2 /3 /4 /6y /12

Sistema de diseiio. Iconos

En el caso de las toolbars se utilizan icono con tamafo de 24x24 pixeles. Aun asi hay que tener en cuenta
el High DPI, por ese motivo los iconos deben tener tamafios superiores como 48x48, 64x64 0 96x96 ya que
al reducirlos a 24x24 se veran con buena calidad, sin embargo el efecto contrario genera pixelacion.

ICONOS INTERFAZ

© ©
Usar 18x18 por defecto y los de
24x24 para destacar alguna opcion

en particular (ejemplo en el menu
principal)

En las rejillas se pueden usar iconos para representar informacion, tanto con campos objetos dibujo o con
iconos de tablas estaticas. En ambos casos el tamario deberia ajustarse a esos 18x18 0 24x24 y aplicar el
criterio de forma distinta para cada simbologia, es decir combinar color con forma ayuda al usuario a
identificar el significado del color.

ICONOS EN REJILLAS

Preferiblemente por temas de
accesibilidad usar una forma distinta
por cada simbologia

79

veero® life is soft

Guia de estilo de programacion Velneo

Sistema de disefio. Campos

A la hora de crear cajas de edicién aplicaremos la unidad de referencia como tamafio base, sobre todo en
campos de ancho o alto fijo, sin embargo en campos con ancho por defecto o proporcional no tendremos
que ajustarnos a la unidad de referencia pues su tamafo dependera del area disponible en el momento del
pintado, sin embargo si que es conveniente que su tamanio en el editor de formularios se ajuste al maximo
posible a los valores de la unidad de referencia.

CAMPOS

Normal Over Focus Error Desactivado

En cuanto a los colores de borde los controles de edicién se aplican con la siguiente CSS.

QLineEdit, QTextEdit {
background-color: #FFFFFF;
border: 1px solid #EOEOEO;
color: #212121;
height: 30px;
padding-left: 2px;
selection-background-color: #3F51B5;
selection-color: #FFFFFF; }

QLineEdit:hover, QTextEdit:hover {
border: 1px solid #757575; }

QLineEdit:focus, QTextEdit:focus {
border: 2px solid #3F51B5; }

QLineEdit:disabled, QTextEdit:disabled {
background-color: #BDBDBD; }

80

velneor

Sistema de disefio. Botones y toolbars

life is soft

Guia de estilo de programacion Velneo

En la imagen podemos ver el sistema aplicado a los botones y toolbar en Velneo.

] [ACCION

CTA Focus

] [ACCION

] [ACCION

BOTONES
ACCION [ACCION
CTA Normal CTA Qver
ACCION [ACCION
Normal Over
ACCION [ACCION
ATN Normal ATN Over
P g LN P g P g =N
© © [l ®© ©

ATN Focus

ACCION

ACCION

CTA Press igual que normal CTA Botén desactivado

ACCION ACCION

Press igual que normal Botoén desactivado

ACCION

ATN Press IDEM normal

ACCION

ATN desactivado

Para la aplicacion del estilo de botones utilizamos la siguiente CSS:

QPushButton {
background-color: #FFFFFF;
border: 1px solid #EOEOEO;
border-radius: 5px;
color: #212121;
font-size: 12px;
height: 30px;
line-height: 16px;
text-align: center;

gproperty-iconSize: 18px; }

QPushButton:hover {
border: 1px solid #3F51B5; }

QPushButton:focus {
border: 2px solid #3F51B5; }

QPushButton:pressed {
border: 2px solid #3F51B5; }

81

velneor

QPushButton:disabled {
background-color: #9E9E9E;
border: 1px solid #9E9E9E;
color: #FFF; }

QPushButton: :menu-indicator {
image: none;

width: Opx; }

life is soft

Guia de estilo de programacion Velneo

Hay que tener en cuenta que hay botones con una CSS diferente como el caso de botén de llamada a la

accioén “CTA" o de atencién “ATN" :

QPushButton#BTN_ACE {
background-color: #3F51B5;
color: #FFF; }

QPushButton:hover#BTN_ACE {
background-color: #FFFFFF;
color: #3F51B5; }

QPushButton: focus#BTN_ACE {
background-color: #FFFFFF;
color: #3F51B5; }

QPushButton:pressed#BTN_ACE {
background-color: #3F51B5;
color: #FFF; }

QPushButton:disabled#BTN_ACE {
color: #727272; }

Para la aplicacién del estilo de las toolbar utilizamos la siguiente CSS:

QToolBar {

background-color: transparent;

border: Opx;
padding: 3px;
spacing: 10px;

gproperty-iconSize: 18px;

QToolButton {
background-color: #FFF;

82

velrm® life is soft

Guia de estilo de programacion Velneo

border: 1px solid #EOEOEO;
border-radius: 5px;

color: #727272;
margin-right: 1px;
min-height: 18px;
min-width: 18px;

padding: 5px;
gproperty-iconSize: 18px; }

QToolButton:hover {
border: 1px solid #3F51B5;

border-radius: 5px; }

QToolButton:focus {
border: 2px solid #3F51B5;

border-radius: 5px; }

QToolButton:disabled {
background-color: #CECECE;
border: 1px solid #727272;
color: #727272; }

QToolButton:pressed {
border: 2px solid #3F51B5;

border-radius: 5px; }

QToolButton: :menu-indicator {
background-color: transparent;

color: transparent; }

Sistema de diseio. Etiquetas

Las etiquetas suelen representarse con controles de tipo texto estatico. Su tamafio viene predefinido por la
unidad de referencia y sus colores por la paleta del sistema.

ETIQUETAS
Etiqueta

Etiqueta error

A continuacion vemos las CSS que se utilizan para aplicar el sistema:

83

life is soft

Guia de estilo de programacion Velneo

velneor

QLabel {
background-color: transparent;
color: #757575;

font-size: 11px; }

¢Cual es la clase para cada tipo de objeto, control o subcontrol?

Cada objeto, subobjeto o control puede disponer de una clase en el CSS que nos permite alterar su estilo
visual. A continuacidn se relacionan las clases de Qt o propias de Velneo m4s utilizadas.

Clase CSS

Objeto, control o subcontrol

QCheckBox Boton check

QComboBox Combobox

QDateEdit Caja de edicion de campo fecha

QDateTime Caja de visualizacion de campo fecha y hora
QDateTimekEdit Caja de edicion de campo fecha y hora
QDialog Ventana en cuadro de didlogo

QDockWidget Dock

QDoubleSpinBox Caja de edicion de campo numeérico con botones arriba y abajo
QFrame Marco

QGroupBox Caja de grupo

QHeaderView Cabecera de rejillas y arboles

QLabel Etiqueta de texto

QLineEdit Caja de edicion de texto en una linea
QMainWindow Ventana principal

QMenu Menu contextual

QMenuBar Barra de mend (solo afecta a Windows)
QMessageBox Ventana de mensaje

QNumberSpinBox Caja de edicion de campo numérico con botones arriba y abajo
QProgressBar Barra de progreso

QPushButton Boton

QRadioButton Boton de radio

QScrollBar Barra de scroll vertical y horizontal

84

velneor

Caja de edicion de campo numérico con un botén

QSlider Deslizador

QSpinBox

QSplitter Splitter

QStatusBar Barra de estado

QTabWidget Separador de formularios (pestafias)
QTableView Rejilla

QTextEdit Caja de edicion de texto multilinea
QTimekEdit Caja de edicion de hora

QToolBar Barra de herramientas

QTooltip Tooltip

QTreeView

QWidget#qt_calendar

Arbol visor de tabla y ment arbolado

Calendario

VBoundFieldEdit Caja de edicion de campo puntero a maestro
VCFootView Pie de rejilla
VListBox Listbox

Aplicar propiedades en las CSS

life is soft

Guia de estilo de programacion Velneo

Una de las caracteristicas especiales de las CSS de Qt usadas en Velneo es que podemos aplicar algunas
propiedades de los controles u objetos directamente en la CSS. Esto nos permite cambiar el
comportamiento del control de forma genérica sin programacion adicional, directamente en la hoja de
estilo. A continuacién vemos algunos ejemplos:

Fijamos el texto a mostrar en el control cuando no tenga contenido.

QLineEdit#TXT_BUS {

gproperty-placeholderText: 'Texto a buscar'; }

Fijamos el tamafio del icono en los botones.

QPushButton {

background-color: #FFFFFF;
border: 1px solid #EOEOEO;

border-radius: 5px;

color: #212121;

font-size: 12px;

height: 30px;

line-height: 16px;
text-align: center;
gproperty-iconSize: 18px; }

veero® life is soft

Guia de estilo de programacion Velneo

Ocultamos la barra de estado.

QStatusBar {
background-color: #FFF;
border-top: 1px solid #CECECE;
gproperty-visible: false; }

Ocultamos las lineas del grid de rejillas.

QTableView {
alternate-background-color: transparent;
background-color: #FFF;
border: none;
border-bottom: 1px solid #BDBDBD;
font-weight: normal;
gridline-color: transparent;
selection-background-color: #3F51B5;
selection-color: #FFF;
gproperty-showGrid: false; }

Ocultamos las lineas del grid en el calendario.

QWidget#qt_calendar_navigationbar {
background-color: #CECECE;
gproperty-gridVisible: false; }

Fijamos el icono que se visualizara en el botén de siguiente mes del calendario.

QWidget#qt_calendar_nextmonth {
background: #CECECE;
border: 1px solid #CECECE;
gproperty-icon: url(SENDA_ICONOS_DER.png); }

Aplicar iconos en las CSS

Las CSS nos permiten aplicar iconos en algunos de sus controles. Esto nos proporciona dinamismo y
grandes posibilidades de personalizacion de la aplicacién directamente aplicadas en la CSS. En el caso de
los iconos tenemos la posibilidad de indicar una URL para mostrar imagenes e iconos, por lo tanto estas
imagenes podrian estar en un Internet o en local.

Es mas 6ptimo disponer de las imagenes en local. Por ese motivo hemos implementado en las CSS una
senda virtual basada en un texto que reemplazaremos por la senda real en disco mas el nombre de la
imagen e icono. Vemos ejemplos de la CSS aplicando los iconos a diferentes botones.

En este ejemplo podemos apreciar como podemos utilizar la coma como separador de multiples controles
a los que vamos a aplicar la misma CSS, igual que sucede en las CSS de las paginas web.

QDateEdit: :up-button, QDateTime: :up-button, QDateTimeEdit::up-button,

QTimeEdit: :up-button, VBoundFieldEditBrowser: :up-button, VBoundFieldEdit: :up-button {
border: none;
image: url(SENDA_ICONOS_ARR.png); }

86

velrm® life is soft

Guia de estilo de programacion Velneo

QDateEdit: :down-button, QDateTime: :down-button, QDateTimeEdit::down-button,
QTimeEdit: :down-button, VBoundFieldEditBrowser::down-button,
VBoundFieldEdit: :down-button {

border: none;

image: url(SENDA_ICONOS_ABA.png); }

QComboBox: :drop-down, QDateEdit::drop-down, QDateTime: :drop-down,
QDateTimeEdit: :drop-down, VBoundFieldEditBrowser::drop-down,
VBoundFieldEdit: :drop-down, QTimeEdit::drop-down {

border: none;

image: url(SENDA_ICONOS_ABA.png);

width: 13px; }

QNumberSpinBox:up-button, QDoubleSpinBox:up-button, QSpinBox:up-button {
border: none;
image: url(SENDA_ICONOS_ARR.png); }

QNumberSpinBox:down-button, QDoubleSpinBox:down-button, QSpinBox:down-button {
border: none;
image: url(SENDA_ICONOS_ABA.png); }

A partir de esta CSS, la técnica que utilizamos para aplicar ese icono es la siguiente. Al arrancar la
aplicacion descargamos los iconos que tenemos como objeto dibujo en nuestra aplicacion. No es
necesario utilizar ficheros adjuntos. Estas imagenes o iconos se descargan al directorio caché del client
gue nos garantiza acceso con capacidad de lectura y escritura.

// Guardar iconos en disco para usarlos en las CSS
importClass ("VFile");
importClass ("VImage") ;

// Preparar variables de trabajo
var fichero = new VFile();

var icono = new VImage /() ;

var iconos = ["ABA", "ABA BLA", "ARR", "ARR BLA", "CRR", "DER", "DER BLA", "IZQ", "IZQ BLA"];
var alias = "velneo verp 2 app/":

var senda = theApp.clientCachePath() ;

// Verificamos si el icono ya existe en el directorio del cacherun, en caso contrario se crea
for (var numIcono = 0; numlIcono < iconos.length; numIcono++) {
var fichero = new VFile(senda + iconos[numIcono]);
if (fichero.exists () === false) {
icono.loadResource (alias + iconos[numIcono]) ;
icono.save (senda + iconos[numIconc] + ".png", "PNG");

A la hora de aplicar la CSS hacemos la sustitucion del texto SENDA_ICONOS_ por la senda real del usuario
sysCacheClientPath.

| Interfaz: Establecer hoja de estilo CSS Y |E‘ ‘§|

Identificador de control
9 AUTOEXEC P

[
85 Formula texto hoja de estilo CSS

il

& ‘replaceString(#CSS, "SENDA_ICONOS_", sysCacheClientPath) |E

87

\[elrE()® life is soft

Guia de estilo de programacion Velneo

Aplicar a controles con identificadores especificos

Otra de las virtudes de las CSS es que ademds de poder hacer cambios generales a toda la aplicacion
también nos permite aplicar cambios especificos a controles concretos. Aqui cobra mayor relevancia el
ser estrictos en la aplicacion de los mismo identificadores para los mismos controles en todos los objetos.
De esta forma podemos conseguir:

Aplicar el texto “Texto a buscar” solo en los controles cuya identificador sea TXT_BUS, que normalmente se
utiliza en los mendus.

QLineEdit#TXT_BUS {
gproperty-placeholderText: 'Texto a buscar'; }

Aplicar un estilo diferente a los botones ampliar, reducir, buscar y mend.

/* BOTON AMPLIAR, BOTON BUSCAR, BOTON MENU y BOTON REDUCIR */

QPushButton#BTN_AMP, QPushButton#BTN_BUS, QPushButton#BTN_MEN, QPushButton#BTN_RED {
background-color: transparent;
border: 1px solid #EOEOEO;
border-radius: 5px;

gproperty-iconSize: 18px; }

Aplicar un estilo diferente a los botones ampliar, reducir, buscar y menu cuando el ratén esta encima, gana
el foco, estda presionado o desactivado.

QPushButton:hover#BTN_AMP, QPushButton:hover#BTN_BUS, QPushButton:hover#BTN_MEN,
QPushButton:hover#BTN_RED {
border: 1px solid #3F51B5; }

QPushButton:focus#BTN_AMP, QPushButton:focus#BTN_BUS, QPushButton:focus#BTN_MEN,
QPushButton:focus#BTN_RED {
border: 2px solid #3F51B5; }

QPushButton:pressed#BTN_AMP, QPushButton:pressed#BTN_BUS, QPushButton:pressed#BTN_MEN,
QPushButton:pressed#BTN_RED {
border: 2px solid #3F51B5; }

QPushButton:disabled#BTN_AMP, QPushButton:disabled#BTN_BUS,
QPushButton:disabled#BTN_MEN, QPushButton:disabled#BTN_RED {
border: 1px solid #9E9E9E; }

Aplicar un tamafio fijo a determinados controles, en este caso los botones aceptar, cancelar, suprimir y
opciones. Esto por ejemplo nos permite aplicar nuestro sistema con la unidad de referencia de 120x30
incluso aunque no cambiemos el control en los formularios, lo que supone un importante ahorro de
tiempo.

88

velrm® life is soft

Guia de estilo de programacion Velneo

/* BOTON CON TAMANO FIJO */
QPushButton#BTN_ACE, QPushButton#BTN_CNC, QPushButton#BTN_SUP, QPushButton#BTN_OPC {
width: 120px; }

89

velrm® life is soft

Guia de estilo de programacion Velneo

Codificacion
La principal labor de un desarrollador es escribir buen cddigo. Las mejores aplicaciones siempre tienen

bajo el cap6 buen cédigo. No es posible construir buenas aplicaciones, con buena nota en funcionalidad,
usabilidad y rendimiento escribiendo mal cédigo.

Cuando estamos escribiendo cédigo debemos ser conscientes de que ese codigo debe durar muchos
afos, en ocasiones decenas de afios. Ademas, ese cddigo va a ser mantenido por nosotros mismos o por
otros desarrolladores. Por lo tanto debemos mimarlo para que sea facil de entender, mantener y mejorar.

Por estos motivos no debemos correr a la hora de escribir cédigo y debemos emplear el tiempo necesario
para hacer un buen naming, buenos comentarios y codigo de calidad. A igualdad de rendimiento el mejor
cédigo es el mas sencillo de entender y mantener.

Usa una descripcion del objeto clara, precisa y lo mas breve posible

En la codificacién todo es importante, pero para facilitar su legibilidad debemos escribir buenas
descripciones de objetos que nos faciliten entender que hace el objeto o para que ha sido creado,
utilizando el menor nimero de palabras posibles.

Tras copiar un objeto el siguiente paso deberia ser modificar su descripcion, cuando no lo hacemos nos
con objetos que teniendo diferentes identificadores tienen la misma descripcién lo que dificulta su
mantenibilidad.

Comenta bien tu cédigo

Un cédigo sin comentarios nos obliga a leer todo el cédigo para entender qué hace. Ademads de ser mas
lento para el programador que lo mantiene, es muy facil que no se llegue a conclusiones acertadas ya que
no siempre es obvio todo lo que se programa. Por este motivo es muy importante comentar cédigo y,
sobre todo comentarlo bien.

Comentar bien el cédigo implica no escribir comentarios obvios que no aportan valor, ni comentarios tan
extensos que cuesta lo mismo leerlos que leer e interpretar el cédigo. Un buen comentario debe ser
preciso, conciso y estar ubicado en el lugar adecuado.

Todo proceso, funcién o manejador de evento deberia comenzar con un comentario que describa lo que
hace. Es cierto que es redundante en muchos casos con la propiedad descripcién de propio objeto, pero
debemos entender que no siempre tenemos a la vista el codigo y sus propiedades, por eso es importante
disponer del comentario en el inicio del codigo.

Aplica el mismo estilo de comentarios en todo el cédigo

En un equipo de desarrollo no hay nada mejor que conseguir que todos los programadores escriban el
cédigo aplicando los mismos criterios para el naming, descripciones, comentarios y codificacién. Con el
fin de facilitar esta homogeneidad es conveniente disponer de un estilo de comentarios. A continuacién se
describe un estilo sencillo y facil de recordar. A continuacion se muestra un ejemplo de cémo queda el
cédigo aplicando el estilo de comentarios.

90

velrm® life is soft

Guia de estilo de programacion Velneo

E Rem (Importacidn de articulos en formato C5V)
O Libre
E Rem (Seleccionar el fichero a importar, si no recibimos una senda)
v If (isEmpty(SND))
Ventana de seleccion de fichero (SND, OK, ,)
v I f(OK=0)
£ Finalizar proceso
O Libre
Ed Rem (Leer el fichero seleccionado)
v Fichero: Abrir (fichero, SND, Solo lectura, OK, .Ninguno)
s Set (SEG,1)
Set (REG_IMP, 0)
Rem (Si no recibimos un separador asumimos el tabulador)
Set (SEP, choose(isEmpty(SEP), "\t", SEP))
Fichero: Leer linea (fichero, DAT, SEG)
Libre
Rem (Procesar la linea leida)
If (SEG)
Set (REG_IMP, REG_IMP + 1)
Q. Cargar lista (ART_M®@VERP_2_dat, ID, stringSection(DAT, SEP, 0, 0, 0), , ,)
= [Z If (sysListSize =0)
B Rem (Alta del nuevo articulo)
hd Crear nueva ficha en memoria (ficha_ART, ART_M@vVERP_2_dat)
Modificar campo (ID, stringSection(DAT, SEP, 0, 0, Q))
Modificar campo (NAME, stringSection(DAT, SEP, 1, 0, 0))
Modificar campo (PVP, stringToNumber(stringSection(DAT, SEP, 2, 0, 0)))
v Alta de ficha (ficha_ART)
R, Afadir ficha a la salida
v [7 Else
B Rem (Si existe el articulo, se modifica)
=, Seleccionar ficha por posicién (1)
v =, Modificar ficha seleccionada
Modificar campo (NAME, stringSection(DAT, SEP, 1, 0, 0))
Modificar campo (PVP, stringToNumber(stringSection(DAT, SEP, 2, 0, 0)))

SN

o0

4

O Libre
E Rem (Mensaje de finalizacién)
[Mensaje ("Se han importado correctamente " + numberToString(REG_IMP, "L", 0) + " registros.", Informacién, ,)

Criterios base para aplicar a los comentarios y algunas matizaciones
Los criterios base a aplicar son los siguientes:

Los comentarios se escriben con lineas aplicando el comando Rem.
Las lineas de comentarios se “comentaran” para que queden de color verde destacando del resto
del codigo y evitando su evaluacién en ninguna circunstancia.

e Siel texto del comentario es muy largo y no se ve por completo en pantalla se dividira en varias
lineas Rem.

e Las separaciones de cddigo o comentarios se conseguiran empleando lineas libre antes de la linea
de comentario Rem.

e Laslineas libres también se “comentaran” para facilitar su lectura y creacién del concepto de
bloque.

Sobre estos criterios base debemos tener en cuenta diferentes excepciones o matizaciones a la hora de
aplicarlos en funcioén de la localizacién.

A vamos a reparar los diferentes tipo de lineas de comentarios que espero te resulten légicos y facil es de
aplicar si deseas usarlos en tu cédigo.

91

velrm® life is soft

Guia de estilo de programacion Velneo

Comentario de inicio de cédigo

Es conveniente que el cédigo comience con una descripcion general del mismo. En muchos casos puede
coincidir con la descripcion del objeto: proceso, funcién, manejador de evento, etc.

Esta linea Rem no requiere ninguna linea libre anterior ni posterior.

Ed Rem (Cargar lineas de presupuesto de venta)
v Q Cargar plurales (VTA_PRE_LIN_G_VTA_PRE)
R, Afadir lista a la salida

Comentario de log de cambios

Si el cambio de un cédigo requiere ser documentado y declarado de forma explicita se afiadira tras el
comentario descriptivo de inicio de cédigo una o varias lineas de log. Estas lineas estaran separadas de la
descripcidn inicial por una linea libre.

El formato de la linea de log sera:

Ed Rem (Importacidn de articulos en formato CSV)
B Rem (17-07-23 - Si no recibimos un caracter separador se asume el tabulador)
B Rem (17-09-12 - Si recibimos una senda no se muestra la ventana de seleccion de fichero)

Aunque en Velneo VERP no es necesario indicar el nombre o nick del programador, si se considera
importante para el desarrollo en equipo se aplicara el siguiente formato:

Ed Rem (Importacion de articulos en formato CSV')
B Rem (17-07-23 - jarboleya - Si no recibimos un caracter separador se asume el tabulador)
B Rem (17-09-12 - mconde - Si recibimos una senda no se muestra la ventana de seleccion de fichero)

Comentario antes del cédigo y después de la descripcion

Si una vez afiadida la linea Rem de la descripcidn general es necesario poner un comentario antes de la
primera linea de cddigo se separaran ambas lineas de comentarios por una libre.

B Rem (Importacién de articulos en formato CSV)
O Libre
B Rem (Seleccionar el fichero a importar, si no recibimos una senda)
v [2 If (isEmpty(SND))
Ventana de seleccion de fichero (SND, OK, ,)
v 2JIf(0OK=0)
£ Finalizar proceso

92

velrm® life is soft

Guia de estilo de programacion Velneo

Comentario inicial de un nuevo bloque en el mismo nivel

Para conseguir que ambos bloques de cédigo queden claramente separados visualmente se aplicarad una
linea libre antes del comentario consiguiendo que el espacio en blanco ayude a separar ambos bloques.

B Rem (Importacién de articulos en formato CSV)
O Libre
B Rem (Seleccionar el fichero a importar, si no recibimos una senda)
v [2) If (isEmpty(SND))
Ventana de seleccidn de fichero (SND, OK, ,)
v I IfF(OK=0)
£ Finalizar proceso

Comentario en primera linea de un bloque sangrado

Cuando hay bloques de codigo que se escriben con sangrado debido a comandos de instruccién que
generan subprocesos como ocurre con los comandos if, cargar lista, recorrer lista, etc. No sera necesario
poner una linea libre ya que el sangrado consigue el efecto de separacion de bloques y una linea libre
genera demasiada separacion.

En el caso de los comando if, else y elseif las lineas de sus subprocesos si empiezan con un comentario lo
haran siempre sin necesidad de incluir anteriormente una linea libre.

B Rem (Procesar la linea leida)
v 3 If (SEG)
v Q Cargar lista (ART_M@vVERP_2_dat, ID, stringSection(DAT, SEP, 0,0, 0), ,,)
v If (sysListSize =0)
E Rem (Alta del nuevo articulo)
v Crear nueva ficha en memoria (ficha_ART, ART_M@vERP_2_dat)
Modificar campo (ID, stringSection(DAT, SEP, 0, 0, 0))
Modificar campo (NAME, stringSection(DAT, SEP, 1, 0, 0))
Modificar campo (PVP, stringToNumber(stringSection(DAT, SEP, 2, 0, 0)))
v Alta de ficha (ficha_ART)
R, Anadir ficha a la salida
v Else
B Rem (Si existe el articulo, se modifica)
=, Seleccionar ficha por posicion (1)
v =, Modificar ficha seleccionada
Modificar campo (NAME, stringSection(DAT, SEP, 1,0, 0))
Modificar campo (PVP, stringToNumber(stringSection(DAT, SEP, 2, 0, 0)))

Comentario en primera linea tras finalizar un sangrado

Aunque la finalizacion de un sangrado ya genera separacion visual del cédigo, la primera linea tras
recuperar el nivel de codigo anterior conviene que si comienza con comentario tenga una linea libre
anterior ya que nos ayudara a comprender que existe codigo anterior al mismo nivel.

93

velrm® life is soft

Guia de estilo de programacion Velneo

Bl Rem (Si existe el articulo, se modifica)
=, Seleccionar ficha por posicién (1)
+ =, Madificar ficha seleccionada
Modificar campo (NAME, stringSection(DAT, SEP, 1, 0, 0))
Modificar campo (PVP, stringToNumber(stringSection(DAT, SEP, 2, 0, 0)))
D Libre
E Rem (Mensaje de finalizacién)
[J Mensaje ("Se han importado correctamente " + numberToString(REG_IMP, "L", 0) + " registros.", Informacién, ,)

Comentario local a un linea dentro de un bloque

Cuando un comentario se utilice para documentar la linea o linea siguientes, pero no a todas las lineas del
bloque, este comentario no incluira una linea libre anterior, ya que su funcién no es separar bloques de
cédigo.

» Fichero: Abrir (fichero, SND, Solo lectura, OK, .Ninguno)
/" Set (SEG,1)
/" Set (REG_IMP, 0)
B Rem (Si no recibimos un separador asumimos el tabulador)
/" Set (SEP, choose(isEmpty(SEP), "\t", SEP))
Fichero: Leer linea (fichero, DAT, SEG)

No dejes lineas en blanco

Cuando editamos cédigo en un manejador de evento, proceso, funcién o evento de tabla hay muchos
programadores que tienen el habito de afiadir lineas vacias para luego ir rellenando el cédigo, eso esta bien
siempre y cuando una vez terminado de escribir el cdédigo eliminemos las lineas “Libre” no comentadas.

Ed Rem (Si no existe el registro de existencias, se crea)

Set (OK, fun:EXS_ALT@VERP_2_dat.dat(#ALM, #ART, #EMP))
Libre

Libre

Libre

Libre

Rem (Si no existe el registro de Articulo + Proveedor, se crea)
Set (OK, fun:ART_PRV_ALT@VERP_2_dat.dat(#ART, #PRV, #REF_PRV))
Libre

Libre

Libre

CO0O0ONTDOOOON

El motivo de no dejar lineas libres es doble, por un lado porque una linea no comentada se evalia aunque
sea para saber que no hay ningin comando de instruccion a ejecutar y por otro lado da la sensacién de
cédigo incompleto no teniendo claro si el cédigo estd terminado o queda algo por programar.

94

velrm® life is soft

Guia de estilo de programacion Velneo

¢Qué pasa con el cédigo que ya tengo escrito?

Te puedes preguntar si merece la pena repasar todo el codigo que ya tengas escrito en una aplicacién para
aplicar un nuevo criterio de comentarios. En principio no es necesario invertir ese tiempo, pero lo que si es
conveniente es aplicar el nuevo criterio cada vez que edites cédigo antiguo. Esto ayuda a saber que ese
cédigo ha sido modificado y con el paso del tiempo podras conseguir que la mayoria de los procesos mas
importantes de la aplicacion tengan el nuevo criterio aplicado.

95

velrm® life is soft

Guia de estilo de programacion Velneo

Procesos

Sin duda es el objeto mas poderoso de Velneo a la hora de crear funcionalidad en nuestras aplicaciones.
Tiene la capacidad de ejecutarse en cualquier plano, admite cualquier origen (ninguno, ficha o lista) y
cualquier destino (ninguno, ficha o lista), puede recibir un nimero ilimitado de parametros y ademas puede
devolver cualquier valor de cualquier variable local declarada en el objeto como si se tratase de
parametros de retorno. Tanta potencia requiere control para no hacer un mal uso de los procesos.

Aplica el criterio de responsabilidad unica

Cuando estamos desarrollando una funcionalidad es facil caer en la tentacion de escribir un proceso largo
que contiene toda la funcionalidad. Sin embargo esa es un mala praxis. Cuando mas largo es un proceso
mas complicado es de leer, entender y mantener. Por ese motivo es conveniente usar el criterio de
responsabilidad unica. En lugar de tener un mega proceso es mejor:

Crear un proceso principal que se encargue de llamar a otros procesos.

Cada uno de los procesos llamados deberia realizar una tnico funcién. No debemos confundir
funcién con calculo, es decir un proceso puede calcular muchos valores pero siempre que se
realicen sobre la misma informacion.

Tampoco debemos caer en el error opuesto, es decir, atomizar tanto nuestros procesos que al final
tengamos un grupo de procesos encadenados dificiles de analizar y comprender. Por ejemplo, no es facil
de mantener un proceso A que llama a un proceso B que a su vez llama a los procesos C1y C2 y cada uno
de estos llamada otros procesos. Esta jerarquia de procesos hace complicado seguirlo y mantenerlos.

Por lo tanto nuestro objetivo debe ser siempre buscar el equilibrio entre responsabilidad Unica y evitar el
exceso de atomizacion, para ellos podemos recurrir a combinaciones de procesos y funciones que faciliten
la legibilidad del cddigo.

Otro problema que plantea la aplicacién de la responsabilidad Unica es la necesidad de pasar informacion
de un proceso a otro, algo que se evita cuando todo esta en el mismo proceso. En este punto volvemos a
repetir la palabra equilibrio, es decir debemos aplicar el criterio de responsabilidad tnica cuando un
proceso va a ser llamado por otros y es mejor tener pequefias piezas de cédigo que realizan funciones
concretas con un bajo nivel jerarquico y sin complejidades a la hora de pasar informacion.

Separa interfaz de proceso

Uno de los aspectos mas importantes a la hora de optimizar un proceso es separar la parte de interaccién
con el usuario a través de la interfaz de la aplicacion de reglas de negocio, cdlculos y otras operaciones
transaccionales automaticas que no requieren interaccion.

El problema de que todo esté junto es que nos imposibilita la ejecucién de un proceso en 3° plano,
perdiendo la posibilidad de optimizar la parte de aplicaciones de reglas de negocio, célculos y otras
operaciones transaccionales.

Por este motivo y aunque requiera algo mds de programacion siempre es conveniente tener separada en
un proceso independiente la parte de interfaz. Un ejemplo de buena préctica podria ser el siguiente
esquema de ejecucion:

96

velrm® life is soft

Guia de estilo de programacion Velneo

Un proceso LLAMADOR lanza la interfaz donde se pide la informacién al usuario.
El proceso LLAMADOR realiza las verificaciones oportunas avisando al usuario en caso de error.
Si todo es correcto lanza en 3° plano un proceso CALCULADOR que realiza las operaciones
transaccionales.

e Alfinalizar el proceso CALCULADOR en 3° plano el proceso de interfaz recupera la informacién
relevante como el estado final, errores en caso de que los haya, registros creados, etc.

e El proceso LLAMADOR muestra al usuario el resultado final del proceso ejecutado.

En el ejemplo anterior solo hay 2 procesos LLAMADOR y CALCULADOR, el primero se encarga de la
interaccion con el usuario a través de la interfaz tanto antes como después de que finalice la transaccioén,
mientras que el segundo proceso se ejecuta de forma optimizada en el servidor ya que no utiliza nada de
interfaz.

Este mismo esquema podemos realizarlo de forma similar sustituyendo el proceso LLAMADOR por un
formulario que realizar toda la parte de interfaz con manejadores de evento del formulario.

Evita la complejidad ciclomatica

La complejidad ciclomatica es una métrica del software que proporciona una medicion cuantitativa de
la complejidad logica de un programa. Es una de las métricas de software de mayor aceptacion, ya
que ha sido concebida para ser independiente del lenguaje.

Traducido a lenguaje Velneo es un valor que se calcula en base a la cantidad de niveles que se
establecen en un proceso. Veamos un ejemplo:

B Rem (Preparacion de la auxiliar)
(2 If (#PLA_APU_AUX="_")
7 Set (AUX, #AUX)
Else if (#PLA_APU_AUX="A")
/' Set (AUX, ANT_AUX)
[Else if (#PLA_APU_AUX="B")
/" Set (AUX, VTO_AUX_CLT_CUR)
(7] Else if (#PLA_APU_AUX="C")
Set (AUX, VTO_AUX_CLT_ORI)
(7] Else if (#PLA_APU_AUX="D")
7/ Set (AUX, VTO_AUX_BCO)
D Libre
B Rem (Si no existe y estd configurado, se genera la cuenta auxiliar)
[If ((VTO_ID) & (#ADD_AUX_NO_EXI))
/" Set (AUX_OPC, #PLA_APU_AUX)
v [Z If (COB_PAG ="C")
B Rem (Vencimiento a cobrar)
v Q Cargar lista (VTO_COB_C@vERP_2_dat, ID, VTO_ID, ,,)
=, Seleccionar ficha por posicién (1)
¥ =, Leer ficha seleccionada
v If (AUX_OPC = "D")
E Rem (Banco)
/" Set (NOM, #AUX_BCO.NAME)
v Crear nueva ficha en memoria (ficha_AUX_C, AUX_C@vERP_2_dat)
Madificar campo (PGC, PGC)
Modificar campo (ID, AUX)
Modificar campo (NAME, NOM)
v Alta de ficha (ficha_AUX_C)
O Libre
v [Else
B Rem (Auxiliar)
Set (NOM, #AUX.NAME)
v Crear nueva ficha en memoria (ficha_AUX_C, AUX_C@VERP_2_dat)
Modificar campo (PGC, PGC)
Modificar campo (ID, AUX)
Modificar campo (NAME, NOM)

4

4

4

4

4

4

Sin duda alguna cuando vemos un proceso asi no es facil saber que hace cada linea del proceso ya que

97

velrm® life is soft

Guia de estilo de programacion Velneo

cuando estamos en 1°, 2° o 3° nivel de jerarquia todavia podemos controlarlo, pero cuando los niveles
siguen creciendo nos obliga a leer todo el codigo secuencialmente para saber bajo qué condiciones se
ejecuta las lineas de ese nivel.

Los comandos if y los subprocesos que generar muchos comandos de instruccién nos afiaden
complejidad ciclomatica a los procesos, por ese motivo debemos tratar de simplificarlos al maximoy en
estos casos aplicar el criterio de responsabilidad unica puede ser de gran ayuda, asi como el uso de
funciones que simplifican la lectura del cédigo.

Las verificaciones primero

Cuando tenemos que hacer verificaciones para decidir si vamos o no a ejecutar un parte del cédigo del
proceso, siempre que sea posible aplica el criterio de las verificaciones primero y en caso de error finaliza
el proceso. Vamos a ver 2 ejemplos de cédigo Velneo que hacen lo mismo funcionalmente:

El primero verifica y si no hay error aceptar el formulario:

B Rem (Verificaciones)
v [Z1 If (len(#NAME)=0)
[LJ Mensaje (~NERR_NOM®@VERP_2_dat.dat, Informacion, ,)
@ |Interfaz: Establecer foco (NAM)
v [2] Else
B Rem (Aceptar el formulario)
@ |Interfaz: Aceptar

El segundo verifica, si hay error termina y en caso contrario continuar con el proceso que también acepta.

B Rem (Verificaciones)
v [Z) If (len(#NAME)=0)

[LJ Mensaje (~NERR_NOM®@VERP_2_dat.dat, Informacidn, ,)
® |Interfaz: Establecer foco (NAM)
R, Set retorno proceso = NO

© Libre

Ed Rem (Aceptar el formulario)

@ |Interfaz: Aceptar

Aungue ambos 2 hacen lo mismo para el usuario final, el primero tiene mas complejidad ciclomatica ya
que el aceptar esta en un 2° nivel dentro de un else, ademads si mafiana queremos hacer algo mas dentro
del else es posible que tengamos que crear mas complejidad ciclomatica al crear un if de 2° nivel.

La ventaja del segundo cédigo es que verifica todo lo que tenga que verificar y si hay error muestra el
mensaje y termina, y el resto del proceso ya continua en el nivel principal sin ninguna complejidad
ciclomatica, lo que permite afiadir un if en el primer nivel.

98

velrm® life is soft

Guia de estilo de programacion Velneo

Aunque en un proceso tan pequefio no se nota en exceso la diferencia a medida que hagamos mas cosas
en nuestro proceso podremos apreciar como verificar y finalizar al principio mejora la legibilidad y
mantenibilidad de nuestro cédigo.

Por ultimo habria una 3° forma de hacerlo que auln resulta peor

B Rem (Verificaciones)
v [Z] If (len(#NAME) > 0)
B Rem (Aceptar el formulario)
@ |Interfaz: Aceptar
v [2] Else
[.J Mensaje (~NERR_NOM@VERP_2_dat.dat, Informacion, ,)
@ Interfaz: Establecer foco (NAM)

En este ultimo ejemplo ademads de crear mas complejidad ciclomatica como en el primer ejemplo, emplea
una légica inversa es decir, verifica si esta bien y entonces acepta, pero en caso de error hace la parte final
del cédigo. Esto en un proceso corto todavia se puede llegar a leer, pero si el proceso ocupa mas de lo que
se ve en pantalla al abrir el editor seria muy complicado deducir que en la parte final del cédigo hay un
mensaje de error correspondiente a una verificacion.

En definitiva, primero verificamos todo lo necesario y si todo esta correcto ejecutamos la transaccion. De
esta forma evitamos la mala de idea de primero transacciono y si algo ha ido mal deshago transaccién.

¢Cuando es mejor un proceso que una funcion?

Existen diferentes motivos por los que un proceso puede ser mas conveniente que una funcioén:

Cuando queremos ejecutar un cédigo con un origen ficha o lista.

Cuando queremos recuperar una ficha o lista de retorno.

Si queremos que el cédigo se puede ejecutar en un plano diferente al del cédigo lanzador.
Cuando no queremos tener limite de parametros.

Cuando queremos que el orden de los parametros no influya.

Cuando queremos que existan parametros opcionales independientemente de su posicion.
Cuando queremos poder recuperar no un unico valor de retorno sino todos los valores que sean
necesarios.

e Cuando queremos que el codigo quede integrado en la transaccion en curso aunque estemos
ejecutando en 1° plano.

¢Cuando debo usar el comando ejecutar proceso?

El comando de instruccion es mas limitado que disparar objeto, sin embargo cuenta con la ventaja de la
sencillez.

e Cuando ya estoy en el origen ficha o lista y no necesito pasarle parametros.
e Cuando necesito ejecutar el proceso en 2° plano.

99

velrm® life is soft

Guia de estilo de programacion Velneo

¢Cuando debo usar el comando disparar objeto con un proceso?
El comando disparar objeto requiere mas lineas de cédigo que ejecutar proceso sin embargo cuenta con
ventajas funcionales que nos motivan a usarlo cuando:

e Cuando quiero pasarle parametros al proceso.
e Cuando necesito recuperar parametros o valores calculados en el proceso ejecutado.

100

velrm® life is soft

Guia de estilo de programacion Velneo

Funciones

La funcion es un contenedor de cédigo sin origen. Podriamos decir que una funcién es como un proceso
sin origen, pero la gran diferencia es que mientras el proceso puede ser ejecutado desde una accién, otro
proceso, funcidn, manejador o trigger, la funcion se puede ejecutar en cualquier férmula lo que le da una
potencia de ejecucién que no tiene el proceso. Podriamos que una funcién puede ser ejecutada en
cualquier ambito de nuestra aplicacién.

Acorta codigo

Uno de sus usos mds interesantes es la posibilidad de evitar codigo repetido. Una funcién permite lanzar
cédigo pasandole parametros para que ejecute una funcionalidad retornando un valor que podemos
capturar para su reutilizacion.

Esto nos permite mover cédigo repetido en un proceso, funcién, manejador de evento o evento de tabla a
una funcién que serd llamada desde diferentes puntos. La ventaja es que la llamada a una funcién se
realiza con un Unica linea de cédigo, en el siguiente ejemplo se ve la llamada a 2 funciones.

Ed Rem (Si no existe el registro de existencias, se crea)

2’ Set (OK, fun:EXS_ALT@VERP_2_dat.dat(#ALM, #ART, #EMP))

O Libre

B Rem (Si no existe el registro de Articulo + Proveedor, se crea)

/2’ Set (OK, fun:ART_PRV_ALT@VERP_2_dat.dat(#ART, #PRV, #REF_PRV))

Sin embargo, ejecutar un proceso con paso de parametros requiere varias lineas de proceso. En el
siguiente ejemplo vemos la llamada a 2 procesos con los comandos de instruccién de manejador de
objeto.

Ed Rem (Si hubo cambios que afecten a los saldos se calculan los saldos de los apuntes posteriores y los de la posicién antigua)
v [If ((NO_CAL_SAL = 0) & (EMP_CHG | PGC_CHG | AUX_CHG | FCH_CON_CHG | TIP_ASI_CHG | ASI_CHG | DEB_CHG | HAB_CHG | DEB_ACU_CHG | ...
B Rem (Calcular saldos de apuntes posteriores)
E3 Crear manejador de objeto (PRO_APU_C_CAL_SAL, Proceso APU_C_CAL_SAL@vERP_2 _dat)
E3 Afadir ficha al objeto (PRO_APU_C_CAL_SAL)
~ [Disparar objeto (PRO_APU_C_CAL_SAL, 3° plano: Servidor (sincrono),)
O Libre
D Libre
Ed Rem (Si hubo cambio de posicicn se calculan los saldos de los apuntes posteriores a la posicion antigua)
~ [If (APU_OLD)
v Q Cargar lista (APU_C@VERP_2_dat, ID, APU_OLD, ,,)
=, Seleccionar ficha por posicién (1)
¥ =, Leer ficha seleccionada
E3 Crear manejador de objeto (PRO_APU_C_CAL_SAL, Proceso APU_C_CAL_SAL@VERP_2_dat)
E3 Afadir ficha al objeto (PRO_APU_C_CAL_SAL)
~ [Disparar objeto (PRO_APU_C_CAL_SAL, 3° plano: Servidor (sincrono),)
O Libre

Ten en cuenta el nimero limitado de parametros

Una de las limitaciones de las funciones es que admite un maximo de 10 parametros. No es una gran
limitacién, pero debemos tenerla en cuenta a la hora de establecer la estrategia de paso de muchos
parametros a una funcion.

101

velrm® life is soft

Guia de estilo de programacion Velneo

Propiedades (382) L =X]
F cALBA Funcién
Descripcién Valor -
¥ Propiedades

Identificador CAL_IBA

Nombre Calcular IBAN

Estilos

Comentarios

Pardmetro 1 ® ccec
Parametro 2 @ PAI_COD_ISO
Parémetro 3 (® CAD_CAL
Parédmetro 4 @ CAD_NUM
Parédmetro 5 @® CIF
Pardmetro 6 ® DC
Parémetro 7 @ LET
Parémetro 8 ® NUM_CAR
Parametro 9 @ RES

|_pardmetoto |0 (= z]

Tener una funcién con muchos pardmetros no es comodo, por lo que en la medida de los posible es mejor
crear funciones con pocos parametros.

Si tenemos que pasar mas de 10 parametros y no podemos hacerlo con un proceso tenemos 2 opciones,
utilizar el 10° pardmetros para pasar muchos valores o pasar un Unico parametro con todos los valores.
Esta segunda opcion tiene la ventaja de que es mas homogénea, es decir, no hay unos parametros que se
pasan directamente y otros agrupados sino que todos se pasan agrupados.

Ese pardmetro con multiples valores puede tener los valores aplicando un formato JSON o XML o CSV, por
ejemplo. Una vez recibido el parametro la funcién comienza descomponiendo dichos valores en las
diferentes variables locales o en una variable global de tipo array.

Documenta los parametros en el inicio de la funcién

Pensando siempre en la mantenibilidad del cédigo y que cualquier desarrollador puede necesitar usar la
funcion es importante describir correctamente los parametros que recibe la funcién y el valor que
devuelve.

Rem (Calcular IBAN)

Libre

Rem (Pardmetros:)

Rem (CCC: Cddigo de la cuenta que incluye la entidad, oficina y n° de cuenta)

Rem (PAI_COD_ISO: Cédigo ISO del pais de origen de la cuenta)

Rem (Retorno: Devuele el IBAN de la cuenta formado por los 2 caracteres del pdis + 2 del cédigo calculado)
Libre

Rem (Preparar variables de trabajo)

Set (PAI_COD_ISOQ, choose(isEmpty(PAI_COD_ISO) = 0, PAI_COD_ISO, "ES"))

NTO0UOE@mod@m

Usa buenas descripciones en las variables locales que sean parametros

Cuando usamos una funcién tras seleccionarla de la lista nos encontraremos que en el lugar donde
tenemos que escribir los parametros nos apareceran unos textos correspondiente a las descripciones de

102

velrm® life is soft

Guia de estilo de programacion Velneo

las variables locales de la funcion. Es fundamental que esas descripciones sean lo mas cortas posibles a
la vez que cumplan la funcién de describir con precision el dato que debemos pasar a la funcién. Si
podemos utilizar una palabra es mejor que dos o0 mas, pero lo mas importante es que se describa bien el
parametro.

| NON | [4] Editor de férmulas

Velneo 'E Z f @@@ l:l Q

fun:CAL_IBA@VERP_2_dat.dat(Cuenta corriente, Cédigo IS0-2 del pais)

Aceptar Cancelar

Ten en cuenta que en 1° plano genera una transaccion independiente

Velneo tiene un sistema transaccional automatico que se encarga de englobar en una Unica transaccién
todas las operaciones realizadas a partir de que ya exista una transaccion abierta. Esto es totalmente
aplicable a las funciones cuando se ejecutan en el servidor. Sin embargo, cuando una funcién transacciona
y se ejecuta en 1° plano, su transaccién no queda agrupada con la que ya estuviese en abierta en curso,
sino que se crea una independiente.

Este funcionamiento debemos tenerlo en cuenta para evitar cuando sea preciso, cambiando en ese caso la
funcién por un proceso o para forzarlo cuando nos interese cambiando un proceso por una funcion.

¢Cuando es mejor una funcién que un proceso?

Existen diferentes motivos por los que una funcién es mas conveniente que un proceso:

Cuando queremos lanzar cédigo desde una féormula debemos usar una funcion.

Si queremos que se puede ejecutar el codigo remotamente desde otro servidor a través de una
funcion remota.

Cuando queremos reducir el cédigo de llamada a una linea.

Cuando el cédigo no tiene origen y necesitamos pasarle parametros.

Cuando queremos que genere una transaccion independiente al ejecutarlo en 1° plano.

103

velrm® life is soft

Guia de estilo de programacion Velneo

Conexiones de evento

Una gran parte de la potencia y funcionalidad de la interfaz de una aplicacion viene dada por el uso de
sefales que nos permiten lanzar cédigo en un momento determinado de la aplicacion. Las conexiones de
evento son muy potentes, pero también debemos usarlas con precaucion para no abusar de ellas y
producir el efecto no deseado en nuestra interfaz.

Evita el uso de la conexién pérdida de foco

Aunque es una tendencia natural usar esta sefial, no es la mas recomendable ya que existen muchas
formas de perder el foco, cambiar de control con tabulacién, con intro, pulsar una opcién del botén de
menu del control, pulsar una tecla de funcién que activa un botén, cambiar de aplicacién, etc.

El problema es que no siempre nos vamos a encontrar con que el funcionamiento es el esperado, aunque
detras del comportamientos siempre hay una explicacion logica. Por este motivo es necesario trabajar con
esta sefial con precaucién. Funciona y funciona bien, pero hay mucha casuistica que se debe tener en
cuenta.

Por ejemplo al pulsar un botén del formulario utilizando una tecla aceleradora, aunque se ejecuta el botén
nuestro control no pierde foco ya que asi es el funcionamiento de las sefiales en Qt. Por este motivo en
ocasiones no es suficiente con la sefial de pérdida de foco, ademas hay que hacer controles adicionales al
aceptar o cerrar el formulario.

Value changed es una buena opcién

Habitualmente es mds recomendable usar la sefial value changed que la de pérdida de foco para detectar
si se han realizado cambios en los datos de un control. Es una sefal que nos garantiza detectar cuando el
valor del campo ha cambiado tanto si es con una opcién de localidad o alta de maestro a través del botén
de menu del control, como si es por una accién del usuario con el teclado a escribir un nuevo valor o con el
ratén al pulsar algun botén arriba o abajo o de seleccién de una lista en vista de datos.

Lo que tenemos que tener presente es que si el cambio de valor del control se realiza mediante
programacion la sefial no se disparara. Es decir, si el usuario cambia el valor manualmente si se dispara,
pero si el cambio es realizado por un manejador de evento programado la sefial no se va a disparar. Es
facil de gestionar, pero siempre que tengamos claro su funcionamiento.

Mejor usar “Ratén: botén soltado” que “Ratén: botén pulsado”

Estas sefiales aunque parezcan similares tienen una gran diferencia. El boton pulsado se dispara cuando el
usuario pulsa el botén, aunque pulse y no suelte el botén del ratén la sefal se habra disparado, sin
embargo si antes de soltar el botdn se desplaza fuera del botén la sefial ya se habria disparado cuando el
usuario realmente a cambiado de opinién al tratar de desplazar el ratén fuera del botén.

Por este motivo es mas recomendable utilizar la sefial botdn soltado que garantiza que el usuario pulsé y
solto el botdn de ratdn sobre el control. En el caso de controles de tipo botdn ya existe una sefial
especifica con el nombre “Botén pulsado”.

104

velrm® life is soft

Guia de estilo de programacion Velneo

e "

Incompatibilidad entre “item: simple clic” e “item: doble clic”

En las rejillas, por ejemplo, nos encontramos que podemos aplicar ambas sefiales, sin embargo debemos
tener en cuenta que si declaramos las 2 sefiales nos vamos a encontrar con que al hacer simple clic se
dispara la sefial correspondiente, sin embargo hacer doble clic también se va a disparar la sefial de simple
clic, algo que puede no ser lo esperado, pero que debemos tenerlo en cuenta.

Onclose solo esta disponible en el AUTOEXEC

Cuando tratamos de controlar el cierre de la aplicacion contamos con la sefial Onclose disponible en el
objeto Marco denominado AUTOEXEC. Esta sefial nos permite cancelar su cierre con el comando de
instruccion “Set retorno = NO”.

Controlar el cierre de un formulario en cuadro de dialogo

En el caso de los formularios en cuadro de didlogo aunque no disponemos de la sefial podemos evitar su
cierre quitando la barra de titulo de la ventana, o quitando el icono de cerrar

Privado
Punto de insercién
Blogueo duro
v| Sin barra de titulo (solo didlogos)
Sin menu de sistema
Sin botdn minimizar
Sin botdn maximizar
v Sin botdn cerrar

Una vez que no hay boton cerrar en el titulo de la ventana podemos poner un botén “Cerrar” o “Cancelar” en
el formulario con el que tendremos control absoluto sobre la accién del usuario.

Controlar el cierre de un formulario en vista

En el caso de que queramos controlar el cierre de un formulario abierto en vista, podemos controlarlo a
través de la sefial “Vista cerrada”.

On close
Post-Inicializado
Pre-Inicializacién
Pre-Vista cerrada
Vista activada

Vista afadida

Cuando se dispara la sefial podemos utilizar funciones del API de Velneo a través de JavaScript para saber
que formulario es el que esta activo y por lo tanto el que esta tratando de cerrar el usuario.

105

velrm® life is soft

Guia de estilo de programacion Velneo

Manejadores de evento

Los manejadores de evento tienen la ventaja de ser cédigo “conectado” al objeto al que pertenece, de tal
forma que un manejador de evento de un formulario tiene control sobre el registro editado y todos los
controles de la interfaz, y un manejador de evento de una rejilla sobre la lista de registros y sus columnas.

Al estar conectado el manejador de evento es usado para aplicar funcionalidades de avanzadas de interfaz
gue no podriamos lograr con procesos o funciones.

Un manejador puede llamar a otro del mismo objeto salvo en el marco AUTOEXEC

Un comando usado habitualmente y que nos ayuda a tener cédigo de responsabilidad Unica es “Interfaz:
Ejecutar manejador de evento”, este comando permite hacer llamadas de un manejador a otro teniendo
siempre presente que comparten el registro o la lista de origen del objeto asi como las variables locales y
las cestas.

Sin embargo, hay una excepcién, el marco AUTOEXEC aunque permite la creacion de conexiones y
manejadores de evento no permite que un manejador de evento llame a otro. En este caso particular
tendremos que hacer uso de funciones o procesos para evitar cédigo repetido.

Las variables locales son compartidas entre los manejadores

Una funcionalidad muy comoda cuando trabajamos con los manejadores de objetos es que las variables
locales declaradas en el objeto son compartidas por todos los manejadores, eso significa que podemos
almacenar valores en variables locales para posteriormente utilizarlas en otro manejador. Esta
funcionalidad es aplicable dentro del objeto, es decir a nivel de una tabla, un formulario, una rejilla, etc.

Debemos tener en cuenta que si un objeto esta instanciado mas de una vez, por ejemplo el usuario abre el
formulario de dos clientes distintos, aunque el objeto es el mismo cada formulario tiene su propio dmbito
de ejecucion, y por lo tanto las variables de un formulario son comunes para todos sus manejadores, pero
las variables locales de un formulario no son accesibles para los manejadores que estan asociados al otro
formulario.

Las cestas locales son compartidas entre los manejadores

Las cestas locales tienen un ambito y una persistencia asociada a la ejecucion del manejador que la crea,
sin embargo sin un manejador de objeto crea una cesta local y Ilamamos desde ese manejador a otro
manejador que utiliza un cesta con el mismo identificador, la cesta es compartida por ambos
manejadores. Al finalizar la ejecucién del manejador que cred la cesta el objeto sera destruido de tal forma
que al volver a lanzar el mismo manejador se creara una nueva cesta local.

Aplica el criterio de responsabilidad tnica y evita cédigo repetido

Los manejadores de evento al igual que las otras piezas de cédigo en Velneo permiten escribir todo el
cédigo que necesites, aunque no es recomendable hacer cédigo largo ya que dificulta su legibilidad y
mantenibilidad.

Gracias a la comparticidn del origen, variables y cestas, es muy sencillo evitar el codigo repetido en los
manejadores de evento, ya que podemos hacer que un manejador llame a otro. Aplicando el mismo criterio

106

velrm® life is soft

Guia de estilo de programacion Velneo

podemos evitar que los manejadores hagan multiples cosas, por ejemplo verificaciones, transacciones,
cambiar el estado de la interfaz, etc. Es recomendable crear pequefios manejadores de evento con
responsabilidad unica que son llamados desde otros manejadores de evento.

107

velrm® life is soft

Guia de estilo de programacion Velneo

Barra de menu

La barra de menu es un objeto importante de la aplicacidon que en muchos casos requiere cierto grado de
personalizacién.

No se pueden afadir o quitar opciones, pero si limpiar y volver a construir
Para personalizar en tiempo de ejecucidn la barra de menu no podemos afiadir o quitar opciones, la Unica

posibilidad es limpiar la barra de menu y afiadirle las opciones deseadas. Esto se puede realizar utilizando
funciones de las clases API de Velneo.

// Personalizacién de la barra de menu

// Se limpia la barra de menu
theMainWindow.clearMenuBar () ;

// Se afladen las opciones generales comunes para todos los usuarios
theMainWindow.addMenuToMenuBar ("velneo verp 2 app/PRN APL");
theMainWindow.addMenuToMenuBar ("velneo verp 2 app/PRN LST");

// El ment configuracién solo para supervisores
if (theApp.isAdministrator()) {
theMainWindow.addMenuToMenuBar ("velneo verp 2 app/PRN SUP");

// Se afiaden una opcidén "..." como punto de insercién
theMainWindow.addMenuToMenuBar ("velneo verp 2 app/PRN INS");

@ vClient Aplicacién Lista Configuracién
[NON) Mi aplicacién - Ejemplo, S.A.

Mend general

Inicio
Ventas
Compras
Almacén

v v v v

Maestros
Contabilidad
Salir

Ejemplo, S.A.

jarboleya

108

velrm® life is soft

Guia de estilo de programacion Velneo

Menus

Los menus y sus opciones son los elementos principales de interaccién del usuario, ya que disparan las
acciones que quieren ejecutar para llevar a cabo las tareas. Como siempre cuantas menos opciones tenga
un menu es mejor para el usuario sin que por ello debamos incrementar el nimero de niveles del menu por
no tener demasiadas opciones en cada nivel.

Minimiza las opciones de tus meniis

Tanto en los menus arbolados como en las barras de menu hay que tratar de utilizar el menor nimero de
opciones posibles. No es necesario establecer un nimero minimo o un nimero maximo, pero si que es
conveniente que el n°® de opciones no obligue al usuario a leer demasiado para encontrar la opcion
deseada.

El orden de las opciones de menti es la clave

En el menu principal arbolado de la captura vemos el orden ventas, compras, almacén, maestros y
contabilidad. Este orden sigue el criterio de uso, es decir, la opcidon mas usada al principio y al final la
menos usada.

Inicio
Ventas
Compras
Almacén
Maestros
Contabilidad
Salir

v Vv Vv Y

En el menu de Ventas el orden aplicado sigue el criterio de ciclo funcional, es decir el orden que tiene un
ciclo de ventas desde el presupuesto hasta el cobro de la factura mediante remesa.

v Ventas
Presupuestos
Pedidos
Albaranes
Facturas
Cobros

Remesas de cobros

109

velrm® life is soft

Guia de estilo de programacion Velneo

En el menl de maestros, por ejemplo se sigue el criterio alfabético, ya que hay muchas opciones.

w Maestros
Almacenes
Articulos
Contactos
Familias
Formas de pago
Huecos
Idiomas
Monedas
Paises
Provincias
Series
Tarifas de venta
Tipos de documento
Tipos de relacién

Turnos

En el submenu de configuracion de la barra de mendus se sigue el criterio alfabético pero separando en 2
grupos las opciones, en primer lugar las mas usadas y luego las de uso menos frecuente.

Empresas
Grupos de usuarios
Usuarios

API key

Config. de aplicacién

CSS

Diccionario permisos

Informes personalizables

Menus dinamicos

Personalizacion de rejillas y formularios
Plantillas de ficheros

Scripts

Utilidades >

En definitiva, podemos usar diferentes criterios de ordenacidn, pero siempre siguiendo una légica
comprensible por el usuario de forma sencilla y |6gica.

Crea menu de boton para cada maestro
En los campos de edicion punteros a maestro debemos declarar siempre un menu de botén que permita

110

velrm® life is soft

Guia de estilo de programacion Velneo

realizar las funciones estandar de localizacion, alta y edicion.

Localizar F5
Nuevo F6

Editar F7

Un aspecto fundamental de estos menus es que utilicen teclas aceleradoras que permitan al usuario
ejecutar las opciones de forma rapida y directa a través del teclado sin usar el raton. Este menu se puede
desplegar con Mayuscula+F4 y luego usar las teclas para seleccionar la opcion y finalmente pulsar Intro,
sin embargo es mucho mas sencillo y directo usar la tecla aceleradora F5 para localizar, F6 para crear un
nuevo registro y F7 para editar el registro seleccionado.

Es fundamental para el usuario saber que las mismas teclas aceleradoras ejecutaran la misma accion en
todos los casos.

Utiliza el mismo icono en todos los botones de ment

Para facilitar al usuario la comprension de la interfaz recomendamos usar siempre el mismo icono que
represente el menu de botén contextual en todos los controles, evitamos al usuario pensar que hara el
botdn.

Cliente - 22509339 Comercial Serie Estado
Aaron Elias Briceo Araya ol e o i Ventas . Pendiente v
Contacto Forma de pago Almacén
. ~ . . ’ -~ . - ~
3 . ¢ Recibo a 30 dias f/fra. o ¢ Almacén i

111

velneor

Toolbars

Las barras de herramientas son muy utilizadas para aportar funcionalidad adicional en los objetos de lista
como alternadores y rejillas, ademas de la toolbar general que se pueden afiadir a los docks del marco.

Utiliza iconos

life is soft

Guia de estilo de programacion Velneo

Las toolbar suelen tener opciones relacionadas con operaciones transaccionales como altas, bajas y
modificaciones, impresion de informes o procesos que realizan acciones especificas como calculos,
generacion de documentos, etc.

B Pedidos de venta

Pedidos de venta

+

=

-

N° Pedido
001/2017/V20007
001/2017/v20004
001/2017/V20003
001/2016/V20002
001/2015/V20000
001/2015/V19999
001/2015/V19998
001/2015/V19897
001/2015/V19996
001/2015/V19995
001/2015/V19994
001/2015/V19993
001/2015/V19892
001/2015/V19991
001/2015/V19890
001/2015/vV19989
001/2015/v19988

20.004

Mi aplicacién - Ejemplo, S.A.

Fecha Cliente

7/11/17 Aaron Elias Briceo Araya

27/7/17 Aaron Elias Briceo Araya

11/5/17 Aaron Elias Briceo Araya

6/7/16 Samuel Francisco Yaez Collao
12/11/15 Alan Ivan Roco Pozo
12/11/15 Marco Antonio Moncada Duran
12/11/15 Julia Margarita Pizarro Cortes
12/11/15 Marianela Ximena Cortes Campusano
12/11/15 Nolfia Del Leon Bugueo
12/11/15 Bernardita Isabel Juica Campusano
12/11/15 Alejandro Esteban Torrejon Veliz
12/11/15 Natalia Gissel Carcamo Fernandez
12/11/15 Jose Adan Castillo Vargas
12/11/15 Julian Andres Gutierrez Zepeda
12/11/15 Elsa Patricia Maturana Chanan
12/1115 Ana Marcela Montecinos Muoz
12/11/15 Jorge Darwin Marin Cabrera

Texto a buscar

Base
1.923,00
225,00
255,00
4.035,60
807,00
1.000,00
2.298,00
440,00
1.461,00
1.394,00
2.664,00
153,00
282,00
1.956,00
1.734,00
1.119,00
1.458,00

18.228.652,50

Total Estado
2.326,83 Pendiente
272,25 Pendiente
308,55 Pendiente
4.882,96 Parcialmente ser...
976,47 Pendiente
810,00 Pendiente
2.780,58 Pendiente
532,40 Pendiente
1.767,81 Pendiente
1.686,74 Pendiente
3.223,44 Pendiente
185,13 Pendiente
341,22 Pendiente
2.366,76 Pendiente
2.098,14 Pendiente
1.353,99 Pendiente
1.764,18 Pendiente

22.056.269,53

Como habitualmente se incluyen acciones estandar y para conseguir una interfaz sencilla en el sistema
Velneo las toolbars se declaran con solo iconos y sin texto. Aunque al pulsar sobre el boton de la toolbar
segun sea de tipo informe o mas opciones, por ejemplo se abrird un menu con el detalle de opciones
asociadas al botén. Veamos un par de ejemplos del menu que despliega al pulsar sobre el boton de
informes o mds opciones.

Ne P

Imprimir listado de pedidos de venta

0017zurz7vzuuur

001/2017/V20004

7711717 Aaron enas sriceo Araya

27/7/17 Aaron Elias Briceo Araya

+ 8 (]
N° Pedido

001/2017/\
001/2017/\ ———_ .

Facturar pedidos seleccionados

Hacer albarén de los pedidos seleccionados

112

velrm® life is soft

Guia de estilo de programacion Velneo

Si desarrollas una aplicacién estandar, afiade una accion con punto de insercién en cada menu

Si desarrollas aplicaciones a medida no tienes que preocuparte por facilitar la personalizacion desde otro
proyecto que herede tu solucién, sin embargo si desarrollas aplicaciones estandar o tienes un nucleo Unico
para todos tus clientes, o una solucion sectorial que luego personalizas para cada cliente, debes tener en
cuenta que las toolbars sean “personalizables”. Es decir, que puedas afiadirle opciones desde proyectos
que lo heredan. En la siguiente captura se puede apreciar como existen opciones que aparecen en itdlica
que representan puntos de insercidn que han sido afiadidos en los menus que a su vez estan incluidos en
la toolbar.

w Toolbars de pedidos de venta
VTA_PED_G
VTA_PED_G_TLB_PRT
VTA_PED_G_PRT_LST
VTA_PED_G_TLB_MAS
VTA_PED_G_LST_VTA_FAC_G
VTA_PED_G_LST_VTA_ALB_G
VTA_PED_G_VER

VTA_PED G_INS
VTA_PED_G_INS_TAB
VTA_PED G_MAS_INS
VTA_PED_G_MAS_INS_TAB
VTA_PED G_PRT_INS
VTA_PED_G_PRT_INS_TAB

00000000 0O E

En la captura se puede apreciar que existen 2 puntos de insercion para cada menu, uno de ellos solo lleva
el sufijo _INS y representa un punto de insercién sin origen.

Propiedades (382) I
© VTA_PED_G_MAS_INS Accién

Descripcién Valor -
¥ Propiedades

Identificador VTA_PED_G_MAS_INS

Nombre

Estilos Punto de insercion

Comentarios

Tabla asociada S

J Inserciones

Si vamos a colocar la toolbar en un objeto con origen como puede ser un alternador o rejilla, conviene
afiadir una segunda opcién de punto de insercion con origen de la tabla que es el que lleva el sufijo
_INS_TAB.

113

velrm® life is soft

Guia de estilo de programacion Velneo

Propiedades (382) 190
° VTA_PED_G_MAS_INS_TAB Accion
Descripcién Valor -
¥ Propiedades

Identificador VTA_PED_G_MAS_INS_TAB

Nombre

Estilos Punto de insercién

Comentarios

Tabla asociada £ VTA_PED_G@vVERP_2_dat

() Inserciones

Agrupa los botones por funcionalidad

Las toolbar con muchos botones son mas complejas de usar y tienen mds carga cognitiva para el usuario,
es como tener un menu que contenga todas las opciones en el nivel principal, sin submenus. Aplicando el
mismo criterio es preferible tener las opciones de informes o de mas opciones que ejecutan calculos o
procesos agrupadas en un botén Unico que las unifica.

+) (8] [-]

N g Imprimir listado de pedidos de venta N° Pedido Facturar pedidos seleccionados
0017zutsjvzuuur 7f11/17 Raron enas sriceo Araya

L A e i 001/20173 Hacer albarén de los pedidos seleccionados
001/2017/Vv20004 27/7/17 Aaron Elias Briceo Araya 001/2017/\ —___ . S

Con este sistema el usuario cada vez que ve una toolbar ya sabe con el primer vistazo si tiene alguna
opcion de impresién o de calculos.

114

velrm® life is soft

Guia de estilo de programacion Velneo

Acciones

Este objeto es usado habitualmente para afiadir opciones en menus, barra de menus y toolbars, aunque
también es posible ejecutarlo desde cédigo. Es un objeto bastante simple que apenas tiene configuracion,
aunque si debemos ser precisos con la descripcion del objeto ya que se convertira en el texto de las
opciones de menu.

Evita el uso de iconos

Como ya hemos comentado en otros apartados, puede ser interesante aplicar algin icono siempre que
aporte informacion relevante, sin embargo, las opciones de menus y toolbars suelen necesitar un texto
mas descriptivo por lo que puede ser redundante el uso de texto e iconos a la vez. En estos casos puede
ser preferible evitar el uso de iconos.

115

velrm® life is soft

Guia de estilo de programacion Velneo

Marco AUTOEXEC

Es el objeto de acceso a la interfaz de la aplicacion.

Aplicar CSS en el evento Pre-Inicializacion

El lugar adecuado para aplicar CSS generales a una aplicacién es el marco AUTOEXEC. Y el lugar concreto
es el manejador de Pre-Inicializacion.

Si aplicamos las CSS en el evento Post-Inicializado la aplicacion de CSS también funciona, pero tendremos
un efecto secundario no deseado y es que primero se pintaran los controles con el estilo estandar de
arranque y una vez pintados se ejecutara el manejador de evento Post-Inicializado que al aplicar las CSS
provoca un repintado. Sin embargo, si lo hacemos en el Pre-Inicializacion ya se aplica las CSS en el pintado
inicial. Esto mismo es aplicable también en cualquier objetos de vista tanto de ficha como de lista.

Permitir configurar que la barra de estado se puede mostrar u ocultar

La barra de estado es un espacio muy Util en algunas ocasiones para mostrar mensajes o barras de
progreso, sin embargo podemos tener algunas circunstancias en las que no deseamos que sea visible, por
ejemplo cuando queremos una interfaz lo mas limpia posible y también cuando estemos trabajando con
una resoluciéon muy baja en formato 16:9 donde tenemos muy poco espacio vertical y cada pixel cuenta.

En esos casos puede interesarnos quitar la barra de estado, o hacerlo de modo temporal o incluso dejarlo
configurable a nivel general de aplicacién o de usuario. El siguiente cédigo JavaScript lo permite de forma
sencilla.

// Ocultar/Mostrar la barra de estado

if (theMainWindow.isStatusBarVisible()) {
theMainWindow.hideStatusBar () ;

} else {
theMainWindow.showStatusBar () ;

Aunque también podemos gestionarlo con cédigo nativo.

Interfaz: Ocultar vV @

i Identificador de control
3 STATUS_BAR v

116

\[elrE()® life is soft

Guia de estilo de programacion Velneo

Formularios de edicion

El objeto mas importante a la hora de crear la interfaz de usuario de las aplicaciones. Debemos crearlos
con el mayor mimo posible, cuando al maximo los detalles, porque para el usuario todo lo que tiene a la
vista es muy importante.

Identificadores

Los controles incluidos en los formularios siguen los siguientes criterios de nomenclatura que podemos
ver en la siguiente tabla que contiene los controles mas habituales de un formulario.

BTN_AVA_CTL Botdn oculto que permite al usuario avanzar de control con la tecla Intro.
LAY_TIT Layout del titulo.

TXT_TIT Titulo del formulario.

LAY_CAB Layout de cabecera.

TXT_ID Texto estatico o nombre del campo ID.

ID Control de edicion del campo ID.

TXT_NOM Texto estatico o nombre del campo NAME.

NOM Control de edicién del campo NAME.

LAY_DET Layout detalle.

SEP Control de tipo separador formularios.

LST Control de vista de datos ubicado directamente en el formulario.
LAY_BTN Layout botones (en el pie)

BTN_ACE Botdn aceptar.

BTN_CNC Boton cancelar.

EXP_BTN Expansor entre botones.

BTN_SUP Boton eliminar.

BTN_OPC Botdn opciones.

Un formulario prototipo con estos controles seria el siguiente:

117

velrm® life is soft

Guia de estilo de programacion Velneo

Contactos Direcciones Punto de insercion | |

b
@ ENT (ENT_M)
L 3

Resoluciéon minima

Disefiaremos los formularios para que los controles se vean correctamente con una resolucién de
1366x768. Si hay problemas de espacio dividiremos la informaciéon en mas subformularios.

Tamaiio del formulario

Los formularios tendran un ancho multiplo de la unidad de referencia, es decir, 120, 240, 360, 480, 600, 720,
840y 960. En principio trataremos de no maquetar formularios que superen este tamafio.

El alto de un formulario también sera multiplo de la unidad de referencia 30, 60, 90, 120, 150, 180, 210, 240,
270, 300, 330, 360, 390, 420, 450, 480, 510, 540, 570, 600, 630, 660, 690 y 720. Trataremos de no superar
los 720px en altura ya que la resolucion minima es de 768 y debe entrar la barra de titulo de la ventana mas
la barra de estado si esta visible.

Tamaiio de los subformularios

Los subformularios al visualizarse dentro del area del formulario principal no necesitar tener una
dimension especifica asociada a la unidad de referencia, aunque siempre es conveniente aplicar los
mismos criterios de tamafio.

Para subformularios que muestren una vista de datos lo mejor es utilizar una dimensién muy reducida ya
que el control crecera para ocupar todo el drea. Por defecto ponemos el control de vista de datos de

118

life is soft

Guia de estilo de programacion Velneo

velneor

100x100 y el formulario de 120x120.

‘Operacion
| 180 -
#VTO_COB_C

Interac

Tamafos y alineamientos de los tipos de control

En la siguiente tabla se detallan los tamafios de anchos, altos, los anchos y altos de layout y la alineacién
de los diferentes tipos de control que podemos usar en los formularios. Estos son tamafios base pueden
ajustarse para conseguir un mejor alineamiento de todos los controles en el formulario

Tipo de control Ancho layout | Alto layout

Texto estatico a la izquierda

Texto estatico arriba

Nombre de campo a la izquierda

Nombre de campo arriba

Edicion alfabética (10 caracteres)

Edicién alfabética (40 caracteres)

Edicién numérica (2 enteros, 2 decimales)
Edicién numérica (9 enteros, 2 decimales)
Edicion fecha

Edicién hora

Edicion fecha y hora

Botoén

Combobox

120

120

120

120

240

60

120

120

90

180

120

120

20

20

20

20

20

20

20

20

20

20

30

20

Por defecto
Por defecto
Por defecto
Por defecto
Fijo
Por defecto
Fijo
Fijo
Fijo
Fijo
Fijo
Fijo

Por defecto

Por defecto
Por defecto
Por defecto
Por defecto
Por defecto
Por defecto
Por defecto
Por defecto
Por defecto
Por defecto
Por defecto
Por defecto

Por defecto

Izquierda
Segun control
Izquierda
Segun control
Izquierda
Izquierda
Derecha
Derecha
Derecha
Derecha
Izquierda
Centrado

Izquierda

Hay que tener en cuenta que estos tamafios se veran afectados por dos factores, el primero de ellos es
que los tipos de ancho y alto por defecto y proporcional se ajustaran al area disponible en el formulario y el

segundo es la aplicacién de CSS que ajustara los anchos y altos de determinados controles.

119

velrm® life is soft

Guia de estilo de programacion Velneo

Layouts
Para mostrar la configuracién de los layouts vamos a utilizar un nuestro formulario prototipo:

Contactos | Direcciones =~ Puntodeinsercion [. [.00 00000l L

& %
ENT (ENT_M)
3

El objeto formulario generalmente tiene definido un layout con la siguiente configuracién:

Tipo de layout Vertical
Alineamiento horizontal lzquierda
Alineamiento vertical Arriba
Espaciado 0

Margen izquierdo 20
Margen derecho 20
Margen superior 20
Margen inferior 20

El layout de titulo tiene la siguiente configuracion:

Tipo de layout Vertical
Espaciado 10

Margen izquierdo -1

Margen derecho -1

Margen superior -1

Margen inferior 10

Ancho en layout Por defecto
Alto en layout Por defecto

120

velneor

El layout de cabecera tiene la siguiente configuracion:

Tipo de layout
Espaciado
Margen izquierdo
Margen derecho
Margen superior
Margen inferior
Ancho en layout

Alto en layout

El layout de detalle tiene la siguiente configuracion:
Tipo de layout
Espaciado
Margen izquierdo
Margen derecho
Margen superior
Margen inferior
Ancho en layout

Alto en layout

El layout de botones tiene la siguiente configuracion:
Tipo de layout
Espaciado
Margen izquierdo
Margen derecho
Margen superior
Margen inferior
Ancho en layout

Alto en layout

Titulo del formulario

life is soft

Guia de estilo de programacion Velneo

Grid

10
Por defecto
Por defecto

Grid

10
Proporcional
Proporcional

Horizontal
10

10
Por defecto
Por defecto

El control TXT_TIT de tipo texto estatico situado en la parte superior del formulario asume
automaticamente el nombre de singular de la tabla de origen del formulario, ya que ese es el valor por
defecto mas habitual. Para atrapar el nombre singular de la tabla se usa una férmula JavaScript en la

propiedad contenido del control.

Contenido

[*JAVASCRIPT*/theRegister.tableinfo().singleName();

121

velrm® life is soft

Guia de estilo de programacion Velneo

Titulo de la pestaia

Para unificar el criterio del titulo del formulario que se muestra en las pestafias se utilizamos la propiedad
titulo opcional.

Con el objetivo de que los titulo no sean demasiado grandes para conseguir que el tamario de las pestafia
permanezca reducido y que puedan visualizarse un buen nimero de ellas utilizaremos una funcién
encargada de recortar al nimero de caracteres que le indiquemos el texto a mostrar.

[NON | [A] Editor de férmulas

Velneovaz .ch@@@ >

fun:TIT@VERP_2_app.app(~IDI@VERP_2_app.app + " " + #NAME, 20)|

Aceptar Cancelar

La funcién es muy sencilla, se encarga de cortar el texto y afiadirle unos puntos suspensivos “..." en el caso
de que el texto sea mayor que longitud indicada.

B Rem (Devuelve el titulo recortado a la longitud méxima)
R, Set dato de retorno ("" + choose(LON = 0, TXT, choose(len(TXT) < LON, TXT, left(TXT, LON) +"...")))

Como primer parametro de la funcién le pasamos el texto. En el caso de tablas maestras se le pasa una
constante cuyo texto puede ser facilmente traducido.

Como segundo parametro de la funcion le pasamos la longitud a la que debe cortar el texto, si se le pasa
longitud 0 se aplica el texto completo.

¢Cuando en vista o en cuadro de didlogo?

Como norma general deberiamos intentar que los formularios se muestre siempre en vista ya que tienen la
ventaja de permitir al usuario interactuar con otros formularios y vistas sin necesidad de cerrar el
previamente el formulario.

Cuando no nos interese que el usuario pueda hacer otras acciones en la aplicacién sin antes cerrar el
formulario en curso debemos poner a verdadero la propiedad siempre cuadro de didlogo, lo que nos
garantiza que el usuario solo podra trabajar en ese formulario.

Hay otros casos en los que al ser un formulario muy pequefio con poca informacioén no queda bien si se
muestra en vista, en esos casos conviene declararlos también como siempre en cuadro de didlogo
verdadero.

122

velrm® life is soft

Guia de estilo de programacion Velneo

Si lo disparas desde un proceso sale en cuadro de didlogo

Cuando ejecutamos un formulario o cualquier objeto de vista desde un proceso se nos visualizara en
cuadro de didlogo independientemente de lo que tenga el formulario en la propiedad siempre cuadro de
didlogo.

Que la ficha editada en el formulario esté bloqueada o no en el momento de mostrarse el formulario
dependera si hemos leido la ficha en modo de lectura/escritura o solo lectura. En caso de lectura/escritura
se creard una transaccion y la ficha estara bloqueada para otros usuarios de la misma forma que ocurriria
si otro proceso estuviese transaccionando con ese registro.

Mostrar un formulario en vista lanzado desde un proceso

Existe una alternativa para visualizar objetos de vista lanzados desde un proceso en vista evitando que se
muestren en cuadro de didlogo. Esto es util por ejemplo si deseamos desde un proceso abrir varias
pestafias en vista con diferentes registros en formulario o listas en rejilla.

El siguiente script es un ejemplo de como podemos conseguirlo.

i e

// Mostrar una ficha o registro en una nueva pestafia
e

// Cargar los pardmetros recibidos por variables locales
var titulo = theRoot.varToString ("TIT");

var objetoTipoc = theRoot.varToString("OBJ TIP");

var objetoIdRef
var cestaldRef

(
theRoot.varToString ("OBJ_ ID REF");
theRoot.varToString ("CES ID REF");

// Cargamos la lista de la cesta
var lista = new VRegisterList (theRoot) ;
theApp.getBasket (cestaldRef, lista);

// Crear una nueva pestafia con el titulo y el objeto por cada registro recibido
for (var numRegistro = 0; numRegistro < lista.size(); numRegistro++) {
registro = lista.readAt (numRegistro) ;
var vista = theMainWindow.addDataView (objetoTipo, objetoIdRef, registro);
vista.setTitle (titulo);

Podemos crear un proceso con este script JavaScript que recibira estos 4 parametros:

Subobjetos (383) I9a
@

Identificador Nombre Tipo

(@ CES_ID_REF idRef de la cesta con la lista a mostrar Alfabético

(® OBJ_ID_REF idRef del objeto Alfabético

M OBJ_TIP Tipo de objeto Numérico

@ TIT Titulo Alfabético @

Hay que destacar que debemos pasar en un objeto cesta global el registro que queremos editar en el
formulario.

123

velrm@ life is soft

Guia de estilo de programacion Velneo

Formularios de menu

Los menus son formularios especializados en facilitar la busqueda de informacion y visualizar en objetos
de lista para facilitar la edicién o procesado de dicha informacién.

Identificadores

Los controles incluidos en los formularios de menu siguen los siguientes criterios de nomenclatura que
podemos ver en la siguiente tabla que contiene los controles mas habituales de un formulario.

BTN_AVA_CTL Botdn oculto que permite al usuario avanzar de control con la tecla Intro.
BTN_CNC Botdn oculto que permite cerrar el menu con la tecla Escape.

LAY_TIT Layout del titulo.

TXT_TIT Titulo del formulario.

LAY_CAB Layout de cabecera.

ESP_CAB Espaciador cabecera.

LAY_BUS Layout busqueda.

LAY_TXT Layout texto a buscar.

TXT_BUS Control de edicion del texto a buscar (Con retardo sefial ValueChanged)
BTN_BUS Boton buscar.

ESP_TXT Espaciador texto a buscar.

BTN_AMP Para mostrar la busqueda ampliada o avanzada.

BTN_RED Para ocultar la busqueda ampliada o avanzada.

TXT_FCH Texto estatico del periodo de fechas.

LAY_FCH Layout fechas.

FCH_DES Fecha desde.

FCH_HAS Fecha hasta.

ESP_FCH Espaciador fechas.

LAY_DET Layout detalle.

LST Vista de datos de lista.

Un formulario de menu prototipo con estos controles seria el siguiente:

124

life is soft

Guia de estilo de programacion Velneo

En ejecucion se muestra por defecto con el siguiente disefio con busqueda estandar:

B Pedidos de venta %

Pedidos de venta

=
+ & e

N° Pedido T
001/2017/V20007
001/2017/V20004
001/2017/v20003
001/2016/v20002
001/2015/v20000
001/2015/v19999
001/2015/v19998

20.004

Mi aplicacién - Ejemplo, S.A.

Fecha Cliente

7/11/17 Aaron Elias Briceo Araya
27/7/17 Aaron Elias Briceo Araya
11/5/17 Aaron Elias Briceo Araya

6/7/16 Samuel Francisco Yaez Collao
12/11/15 Alan Ivan Roco Pozo
12/11/15 Marco Antonio Moncada Duran
12/11/15 Julia Margarita Pizarro Cortes

ITexto a buscar

Base Total Estado
1.923,00 2.326,83 Pendiente
225,00 272,25 Pendiente
255,00 308,565 Pendiente
4.035,50 4.882,96 Parcialmente ser...
807,00 976,47 Pendiente
1.000,00 810,00 Pendiente
2.298,00 2.780,58 Pendiente v

10.983.445,50 13.289.569,06

y con busqueda avanzada o ampliada queda asi:

125

velrEO® life is soft

Guia de estilo de programacion Velneo

O ® Mi aplicacién - Ejemplo, S.A.

B Pedidos de venta %

Pedidos de venta

Texto a buscar Q ~

Periodo de fechas v v

Estado () Pendiente () Parcialmente servido () Servido (® Todo
N° Pedido M Fecha Cliente Base Total Estado o
001/2017/v20007 7/11/17 Aaron Elias Briceo Araya 1.923,00 2.326,83 Pendiente
001/2017/V20004 27/7/17 Aaron Elias Briceo Araya 225,00 272,25 Pendiente
001/2017/v20003 11/5/17 Aaron Elias Briceo Araya 255,00 308,565 Pendiente
001/2016/v20002 6/7/16 Samuel Francisco Yaez Collao 4.035,50 4.882,96 Parcialmente ser...
001/2015/v20000 12/11/15 Alan Ivan Roco Pozo 807,00 976,47 Pendiente
001/2015/v19999 12/11/15 Marco Antonio Moncada Duran 1.000,00 810,00 Pendiente
001/2015/v19998 12/11/15 Julia Margarita Pizarro Cortes 2.298,00 2.780,58 Pendiente v
20.004 16.448.357,50 19.902.112,58

Layouts
En un formulario de menu prototipo utilizamos las siguientes configuraciones de layout:

El objeto formulario generalmente tiene definido un layout con la siguiente configuracién:

Tipo de layout Vertical
Alineamiento horizontal Izquierda
Alineamiento vertical Arriba
Espaciado 0

Margen izquierdo 20
Margen derecho 20
Margen superior 20
Margen inferior 20

El layout de titulo tiene la siguiente configuracion:

126

velneor

Tipo de layout
Espaciado
Margen izquierdo
Margen derecho
Margen superior
Margen inferior
Ancho en layout

Alto en layout

El layout de cabecera tiene la siguiente configuracion:
Tipo de layout
Espaciado
Margen izquierdo
Margen derecho
Margen superior
Margen inferior
Ancho en layout

Alto en layout

El layout de busqueda tiene la siguiente configuracion:
Tipo de layout
Espaciado
Margen izquierdo
Margen derecho
Margen superior
Margen inferior
Ancho en layout

Alto en layout

El layout de detalle tiene la siguiente configuracion:
Tipo de layout
Espaciado
Margen izquierdo
Margen derecho
Margen superior
Margen inferior
Ancho en layout

Alto en layout

life is soft

Guia de estilo de programacion Velneo

Vertical

10
Por defecto
Por defecto

Horizontal
10

10
Por defecto
Por defecto

Por defecto
Por defecto

Vertical
10

10
Por defecto
Por defecto

127

velrm® life is soft

Guia de estilo de programacion Velneo

El resto de layouts que se usan para agrupar controles como el layout de texto a buscar y layout de fechas,
tienen la siguiente configuracién para ajustar al maximo los margenes separando los controles internos:

Tipo de layout Horizontal
Espaciado 10

Margen izquierdo 0

Margen derecho 0

Margen superior 0

Margen inferior 0

Ancho en layout Por defecto
Alto en layout Por defecto

Titulo de la pestaia

A diferencia de los formularios de edicion el titulo de la pestafia de un menu se asume de la propiedad
nombre del formulario.

Con el fin de evitar programacion y el tipico efecto de copiar/pegar que se produce cuando creamos un
formulario de menu a partir de otro y se nos olvida cambiar la propiedad nombre se utiliza un manejador de
evento de tipo JavaScript llamado CHG_TIT (cambiar titulo) que solo tiene esta linea de cédigo.

// Cambiar el titulo del formulario aplicando el nombre del formulario al texto del control
theRoot.dataView () .control ("TXT TIT") .setText (theRoot.dataView () .objectInfo() .name());

Podemos copiar este manejador en todos los menus y funcionara correctamente ya que se encarga de
atrapar el valor de la propiedad nombre del formulario y ponerlo en el control TXT_TIT que es de tipo
Nombre de campo sin ninguna resolucién de campo, ya que este tipo de control si permite cambiar
dindmicamente su contenido. El manejador CHG_TIT es ejecutado por el manejador POS_INI al construirse
el formulario.

128

velrm@ life is soft

Guia de estilo de programacion Velneo

Rejillas

Se trata del objeto mas usado en las aplicaciones Velneo ya que sabemos que como usuarios nos gusta
recibir la informacién en modo lista para luego filtrar o entrar en el detalle de determinadas fichas.

Identificadores

Los identificadores de las columnas deben coincidir con su contenido. Si el contenido es un campo el
identificador debe ser el mismo que el del campo, si es una férmula deberiamos poner un identificador que
represente el resultado de la férmula.

Subobjetos (§83) 100
g B &

Identificador Nombre

NUM_PED N° Pedido

FCH Fecha

CLT_ENT Cliente

BAS_TOT_DTO Base ©)

TOT_PED Total

EST Estado

Anchos y alineamientos de columnas en funcion del tipo de dato

En la siguiente tabla se describen los anchos, tipos de ancho y alineacion de los tipos de datos mas tipicos
utilizados en rejillas.

Tipo de dato Tipo de ancho

Texto de tamafio fijo (3 caracteres) Interactivo o fijo Izquierda
Texto de tamaiio fijo (9 caracteres) 90 Interactivo o fijo Izquierda
Texto de tamaiio fijo (12 caracteres) 120 Interactivo o fijo Izquierda
Texto de tamafio variable (40 caracteres) 200 Maximo disponible Izquierda
Fecha 90 Interactivo o fijo Derecha
Numero corto (2 enteros, 2 decimales) 60 Interactivo o fijo Derecha
Numero medio (6 enteros, 2 decimales) 90 Interactivo o fijo Derecha
Numero largo (9 enteros, 2 decimales) 120 Interactivo o fijo Derecha
Icono pequefio 30 Interactivo o fijo Centrado
Dibujo grande 120 Interactivo o fijo Centrado

Si en una rejilla no hay ninguna columna de tipo de ancho “maximo disponible” pondremos a todas las
columnas el tipo de ancho como “maéximo disponible”.

129

velrm® life is soft

Guia de estilo de programacion Velneo

Crea rejillas especificas para uso en formularios de maestros

Dado que los objetos de vista se pueden utilizar tanto dentro de la interfaz de la aplicacién por parte del
programador como ser usados por los usuarios en caso de no ser privadas, conviene que por cada tabla se
cree una rejilla “completa” con todos los campos o al menos los mas significativos.

VTO_COB_C Cobros

VTO_COB_C_APU Cobros de un apunte
VTO_COB_C_AUX Cobros de una cuenta auxiliar
VTO_COB_C_BCO Cobros de un banco
VTO_COB_C_CBA Cobros de una conciliacién bancaria
VTO_COB_C_LOC Cobros (Localizador)
VTO_COB_C_REM Cobros de una remesa
VTO_COB_C_VTA_FAC Cobros de una factura de venta
VTO_COB_C_VTO Cobros de un vencimiento

) D 8 D D G R

Adicionalmente, debemos crear rejillas especificas que se visualizardn en las vistas de plurales de tablas
maestras. Estas rejillas tienen la peculiaridad de que no contienen la columnas o columnas con
informacion del maestro que ya es visible en el formulario que contiene la rejilla. A continuacién vemos en
primer lugar la rejilla de cobros VTO_COB_C con todas las columnas y debajo la rejilla de cobros de una
cuenta auxiliar VTO_COB_C_AUX que podemos observar que no tiene la primera columna auxiliar.

ene [) VERP_2 (vatp://c5.velneo.com:24980) - Velneo vDevelop
FoO-@ O % sEBHOR L inBme €~ & =
& | EIVTOCOBC X 0
S BB &
g g
] . - i NS
= Auxiliar Importe (Estado) Estado Vencimiento Emisién Tipo documento Normativa N° documento Remesa Domiciliacion Banco o)
2 0 | 200 - Méximo disponibie 120 - Interactivo 90 - Intera.. 90 - Intera.. 80 -Inte.. 120 -Interactivo 90 - Intera... 120 - Interactivo 90 - Intera... 90 - Intera... 200 - Méximo disponible s
T 1 #AUXNAME #MP_EST #ESTNAME #FCH_VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO #AUX_BCO.NAME
§ 2 #AUX.NAME #MP_EST #ESTNAME #FCH_VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO #AUX_BCO.NAME g
% 3 #AUX.NAME #MP_EST #ESTNAME #FCH_VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO #AUX_BCO.NAME L:(
4 #AUX.NAME #IMP_EST #EST.NAME #FCH_VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_... #NUM_DOC #REM_COB #DOM_BCO #AUX_BCO.NAME §
§ 5 #AUXNAME #MP_EST #ESTNAME #FCH_VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO #AUX_BCO.NAME g
g 6 #AUX.NAME #MP_EST #ESTNAME ~ #FCH.VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO #AUX_BCO.NAME
§ 7 #AUX.NAME #MP_EST #ESTNAME #FCH.VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO #AUX_BCO.NAME
§ 8 #AUXNAME #MP_EST #ESTNAME ~ #FCH_VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO #AUX_BCO.NAME
a ZALX NAMF #IMP_FST #FST NAMF #FCH VTO _ #FCH FMI #DOC TIP. NAMF _ #ALIX RFM #NLIM DOC #RFM COR #DOM BCO #ALIX RCO NAMF b
[JoN [[4] vERP_2 (vatp://c5.veineo.com:24980) - Velneo vDevelop
Yy O-@ Ch 5B 9R L I hBBaR €~ & 2
5 ©VvERP2.app23.01 X | E VTOCOBCAUX X o
= s
g B B+ B ;:
% Importe (Estado) Estado Vencimiento Emisién Tipo documento Normativa N° documento Remesa Domiciliacién = ;
2 120 Imeractivo 90 - Intera.. 90 -Intera.. 90 - Intera... 120 - Interactvo 90 - Intera... 120 - Interactivo 90 - Intera... 90 - Mxi.. o
5 #MP_EST #ESTNAME ~ #FCH.VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO
§ #MP_EST #ESTNAME #FCH.VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO 2
E #MP_EST #ESTNAME ~ #FCH.VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO %
#MP_EST #ESTNAME ~ #FCH.VTO #FCH_EMI #DOC TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO g
5 #MP_EST #ESTNAME #FCH.VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO g
g #MP_EST #ESTNAME ~ #FCHVTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO
% #MP_EST #ESTNAME #FCH.VTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO
& #MP_EST #ESTNAME ~ #FCHVTO #FCH_EMI #DOC_TIP.NAME #AUX.REM_.. #NUM_DOC #REM_COB #DOM_BCO
#IMP_FST #FST NAMF #ECH VTO #ECH FMI #DOC TIP.NAME _ #ALIX RFM #NLIM DOC #REM COR #DOM BCO b

130

velrm® life is soft

Guia de estilo de programacion Velneo

Alternadores de lista

El objeto alternador de lista es muy Uutil al permitir contener miltiples objetos de vista de datos facilitando
al usuario final la posibilidad de ver la misma informacién con diferentes formatos o vistas (rejillas,
informes, casilleros, etc.) ademas de forma optimizada. Por lo tanto su uso es recomendado.

Usa un alternador en lugar de poner la rejilla directamente

Una buena practica consiste en no poner directamente rejillas en las vistas de datos y en su lugar poner
siempre un alternador de lista. Aunque en muchos casos solo haya una rejilla, esta técnica permite que en
el futuro se puedan afiadir nuevas vistas de forma sencilla.

B VTO_COB_C Cobros
B VTO_COB_C_AUX Cobros (Auxiliar)

B VTO_COB_C_VTA_FAC Cobros de una factura

Puede ser normal que tengamos que crear multiples alternadores de lista para la misma tabla.

Reducimos la cantidad de cédigo

Una de las grandes ventajas de usar alternadores es que las conexiones y manejadores de evento que les
declaremos serdan funcionales para todas las vistas declaradas en el alternador. Por ejemplo, si tenemos
una toolbar que usamos para dar funcionalidad a varias vistas al aplicarla a través del alternador conseguir
que en lugar de declarar en todas las rejillas las conexiones y manejadores duplicados los tendremos
declarados una unica vez en el alternador ya que es capaz de lanzar los manejadores contra el objeto en
curso. En las siguientes capturas podemos ver como en un alternador hemos declarado 7 conexiones de
evento y sus manejadores que son lanzados por acciones disparadas desde una toolbar, si este alternador

contiene 3 rejillas hemos conseguido que todas tengan la misma funcionalidad ahorrando repetir el cédigo
3 veces.

Subobjetos (83) ¥®O subobjetos (%3) 100
O] B | ®

Identificador Control Sefial Manejador de evento Identificador Nombre

AGR Accién disparada [2] AGR AGR Agrupar

CNC Accién disparada [¢] CNC CNC Cancelar

coB Accién disparada [¢] COB coB Cobrar

DES Accién disparada [2] DES @ DES Desglosar

LST_SEL Accién disparada [2] LST_SET_SEL LST_SET_SEL Dejar los selecci...
REM_ADD Accién disparada [2] REM_ADD REM_ADD Afadir vencimie...
REM_ALT Accidn disparada [2] REM_ALT REM_ALT Crear nueva rem...

131

velrm® life is soft

Guia de estilo de programacion Velneo

Calidad

La calidad de una aplicacion es resultado de todo el trabajo realizado durante el ciclo completo de
desarrollo. Al finalizar un sprint, revisiéon o versién y antes de su puesta en produccion, es muy
recomendable realizar siempre las siguientes opciones para garantizar la maxima calidad.

Revisa los objetos no usados directamente con la extension

Otro aspecto critico en la calidad del software es la limpieza del cédigo, tener el proyecto objetos que no
se utilizan es una mala praxis, y aun es mas grave cuando disponemos de otra extension que se encarga
de realizar esa labor por nosotros mostrandonos en segundos la lista de objetos no usados en el proyecto.

En el menu de Objetos encontraremos la opcidn “Objetos no usados directamente”. El nombre lo dice todo,
son objetos que no son usados directamente dentro de los proyectos a través de cédigo nativo Velneo.

¥* Galeria de objetos F6
Nuevo objeto >
Nuevo sub-objeto >

Importar dibujos
&= Editar informe personalizable

Nueva carpeta
(B8 Nueva carpeta hija

8 Localizar en proyecto
[Buscar en contenido de objetos

Q]

Eliminar

++ Mover de proyecto T ¥#EM
Ultimos modificados >
Navegante de objetos >

Al lanzar esta opcidn nos aparecera la extensién que podremos ejecutar simplemente pulsando el botén
situado en la parte superior.

132

velrm® life is soft

Guia de estilo de programacion Velneo

[] [] [) vERP_2 (vatp://c5.velneo.com:24980) - Velneo vDevelop
fFO-mB O % 8§80 9= L T RAEBme - B~
& [Objetos no usados directamente X o
#® S
o ‘ Q_ Buscar objetos no usados direclameme‘ §
- - 5
2 Priv__Identificador Nombre @
g M ABA Abajo Alg
g M ABABLA Abajo blanco B
5 M ARR Arriba
E M ARRBLA Arriba blanco (%)
5 M DERBLA Derecha blanco &
_5 M 1ZQ_BLA Izquierda blanco £°f.
i m 106 Logotipo de la aplicacién 2
B AMO.C Amortizaciones @
& BR APIKEY_W_SEL APl key ®
#® fF API_SEG_W_SEL Seguridad del API key &£
@ B3 ART_M.TPV Lista TPV
§ E§ BCO_C_SEL Bancos (Seleccién)
8 B CBA_CNC_C_SEL Conceptos de conciliacién bancaria
a B CNC.C_SEL Conceptos automaticos (Seleccion)
= B COS_APU Costes en apunte
M cos_c Costes
8 [CTT_MENT Emails Teléfonos URLs
B EJEC_SEL Ejercicios (Seleccion)
M EMP_M_USR Usuarios de empresas
B} ENT_CLF.M_ENT Clasificaciones del contacto
f ENTRELM Relaciones entre contactos
B ENT_REL_.M_LOC Relaciones entre contactos
B ESTART.G Estadistica por articulo
B} EST_ART_G_ART Estadistica por articulo de un articulo
BH EST_CLT_G_CLT Estadistica por cliente de un cliente
M EST_CMR_G Estadistica por comercial
[EST_CMR_G_CMR Estadistica por comercial de un comercial
B EST_PRV.G Estadistica por proveedor
B EST_PRV_G_PRV Estadistica por proveedor de un proveedor
B FAC_EMI_C_SER Facturas emitidas de una serie (IVA repercutido)
f FAC_REC_C SER Facturas recibidas de una serie (IVA soportado)
B8 B MOV_G_SEL Lista
B PLACOSC Plantillas de costes
B PLA_REP_C_CAL1 Célculo de planing de reparto
B E PRM_DIC_W_USR_GRP Diccionario de permisos de un grupo
@ B PRM_W_USR_GRP Grupos de usuarios de un permiso
B REM_PAG_C_BCO Remesas de ordenes de pagos de un banco ¥

473 objetos no usados directamente

Hay que tener en cuenta que hay objetos que se usan directamente en ejecuciéon como por ejemplo los
objeto dibujo que aparecen al principio de la lista de la captura anterior se usan en un JavaScript que los
exporta para usarlos en las CSS, por lo tanto antes de eliminar un objeto conviene buscarlo en los scripts
(usando el check de herencia) para intentar asegurar que no es usado. Aln usando la bisqueda en scripts
no podemos garantizar que el objeto no sea usado ya que podemos tener en nuestra aplicacion scripts
dinamicos almacenados en tablas de la base de datos, por lo que seria conveniente revisar que no usen
dicho objeto dentro de scripts externos al proyecto.

También puede ocurrir que nos encontremos con objetos como acciones o procesos gue aparentemente
no se usan pero que en realidad son ejecutados de forma dinamica en tiempo de ejecucién, como puede
ocurrir con las opciones de menu cuya configuracion puede estar almacenada en una tabla en disco.

En definitiva, este inspector es de gran ayuda y nos simplifica los objetos que tenemos que revisar porque
no tengan un uso directo, aunque tenemos que realizar una revision posterior para antes de eliminarlos
asegurarnos de que no son usados.

Es importante realizar siempre esta limpieza en nuestros proyectos periddicamente. Un buen momento
puede ser al principio de una nueva versién o revision, ya que en caso de eliminar un objeto que si es usado
serd mas facil de detectar en las pruebas del desarrollador o de los testers.

Revisa los errores con el inspector en todos los proyectos

Realmente deberiamos usar el inspector de errores para revisarlos antes de cualquier ejecucion. Sino lo
hacemos siempre, si que es conveniente revisarlo de vez en cuando durante una sesion de desarrollo y
desde luego antes de cerrar el editor tras finalizar una sesién de trabajo. No deberiamos tener ninguin error

133

velrm® life is soft

Guia de estilo de programacion Velneo

detectado por el inspector de errores, salvo excepciones como algunos avisos por el uso de comandos de
instruccion obsoletos, en cuyo caso lo recomendable es sustituirlo cuanto antes para evitar que aparezcan
los errores en el inspector.

Inspectores (384) O x)
* S ®m & B @

C' Refrescar

Identificador Nombre

+« OK No se han encontrado errores

Siempre que vayamos a publicar una version o a ponerla en un servidor de produccién es “obligatorio”
pasar el inspector de errores para obtener un resultado como el mostrado en la captura anterior.

Revisa la ortografia con la extensién

Aungue los errores de programacion nos parece importantes a los programadores, a los usuarios finales
los errores ortograficos les resultan igual de molestos que cualquier error funcional. Los programadores
tenemos una disposicion a escribir igual que programamos, evitando el uso de acentos, escribir todas las
palabras con la primera en mayuscula, etc. Esto que a priori nos puede parecer normal, es una falta de
calidad en nuestro software que los usuarios finales detectan rapidamente.

Para evitar estos problemas tenemos que tomar 2 medidas. La primera es escribir siempre bien, acentuar
correctamente las palabras, hacer buen uso de las mayusculas y minidsculas, poner puntuacion en las
frases y no utilizar abreviaturas desconocidas para el usuario, en definitiva, escribir bien de la misma forma
que cuidamos el texto en los correos electronicos o si estuviésemos escribiendo un libro. La segunda
medida es utilizar la extensién de vDevelop “Corrector ortografico” disponible en el menu de Proyectos.

B8 Nuevo proyecto de datos 3L
@ Nuevo proyecto de aplicacién X EM
Propiedades del proyecto E#EN
B Documentar proyecto

B Guardar proyecto ®S
@ Guardar y proteger proyecto 1+ 38S
@ Deshacer desproteccién de proyecto 887

(B Guardar todos

® Eliminar todos los puntos de interrupcion

A
v Localizador de controles de edicién nimerica
@ Recalcular errores + 3R

Al ejecutarla se nos mostrara en la parte izquierda la lista de palabras que no son validas o si lo son no
estan identificadas como valida en nuestro diccionario personal. A la derecha se muestran todas las
palabras que hemos afiadido a nuestro diccionario personal.

134

velneor

[Corrector ortografico X

Palabra Identificador
 Swagger £ SWAGGER

« REST & v

v EXIT TPV_CMD_SAL

Nombre
Swagger
AP| REST v1
IDC_EXIT

life is soft

Guia de estilo de programacion Velneo

Diccionario personal

Stock

stocks

VERP

idRef
facturable
autofactura
intracomunitaria
IRPF
prefactura
prefacturado
Ticket

logo

Email

Emails

URLs

SWIFT
Prefacturas

Si hacemos doble clic sobre la palabra se nos abre el lugar donde se usa para que podamos corregirla, si
consideramos que la palabra es correcta hacemos clic en el check situado a la izquierda de la palabra y se
afiadird al diccionario personal dejando de aparecer como erréneamente, si esa palabra esta repetida en
mas lugares al entrar en el diccionario personal desaparecen de la lista todas sus instancias.

Asi pues, no hay excusa para entregar una aplicacion con errores ortograficos. La calidad empieza aqui.

135

