
Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Una​ ​primera​ ​versión​ ​con​ ​mucho​ ​futuro 6

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo 7
¿Qué​ ​características​ ​tienen​ ​los​ ​buenos​ ​programadores? 7
¿A​ ​quién​ ​está​ ​orientado​ ​este​ ​documento? 7
¿Qué​ ​me​ ​aporta​ ​utilizar​ ​una​ ​guía​ ​de​ ​estilo? 7
¿Y​ ​si​ ​hay​ ​aspectos​ ​de​ ​esta​ ​guía​ ​que​ ​no​ ​me​ ​gustan? 7
¿Qué​ ​pasa​ ​con​ ​mi​ ​creatividad?​ ​¿Se​ ​pierde​ ​al​ ​usar​ ​una​ ​guía​ ​de​ ​estilo? 7
¿Por​ ​qué​ ​es​ ​tan​ ​importante​ ​el​ ​diseño​ ​en​ ​el​ ​desarrollo​ ​de​ ​aplicaciones? 8

El​ ​buen​ ​diseño 9
¿Quién​ ​es​ ​Dieter​ ​Rams? 9
10​ ​principios​ ​del​ ​diseño​ ​según​ ​Dieter​ ​Rams 9

Principios​ ​universales​ ​de​ ​diseño​ ​&​ ​Experiencia 11
Principios​ ​universales​ ​de​ ​diseño​ ​con​ ​ejemplos​ ​de​ ​aplicación 11

Soluciones 23
Recomendaciones​ ​sobre​ ​el​ ​nombre​ ​de​ ​los​ ​proyectos 23

Proyectos 24
Recomendaciones​ ​generales​ ​para​ ​proyectos​ ​de​ ​aplicación​ ​y​ ​datos 24
Recomendaciones​ ​sobre​ ​el​ ​nombre​ ​de​ ​los​ ​proyectos 26
Diseño​ ​de​ ​la​ ​arquitectura​ ​de​ ​las​ ​aplicaciones 27

¿Es​ ​mejor​ ​tener​ ​un​ ​proyecto​ ​de​ ​datos​ ​o​ ​dividir​ ​las​ ​tablas​ ​en​ ​múltiples​ ​proyectos? 27
¿Cómo​ ​organizo​ ​mis​ ​tablas​ ​de​ ​diferentes​ ​módulos​ ​en​ ​un​ ​único​ ​proyecto​ ​de​ ​datos? 27
¿Cuándo​ ​tiene​ ​sentido​ ​crear​ ​más​ ​de​ ​un​ ​proyecto​ ​de​ ​datos? 27

Organización​ ​de​ ​carpetas 29
No​ ​repitas​ ​la​ ​organización​ ​del​ ​inspector​ ​por​ ​tipo​ ​de​ ​objeto 29
Mantén​ ​la​ ​misma​ ​estructura​ ​en​ ​los​ ​proyectos​ ​de​ ​datos​ ​y​ ​aplicación 29
Crea​ ​una​ ​carpeta​ ​para​ ​módulo​ ​o​ ​grupo​ ​funcional​ ​de​ ​objetos 29
¿Cómo​ ​organizar​ ​los​ ​objetos​ ​del​ ​proyecto​ ​de​ ​datos​ ​dentro​ ​del​ ​módulo? 30
¿Cómo​ ​organizar​ ​los​ ​objetos​ ​del​ ​proyecto​ ​de​ ​datos​ ​dentro​ ​del​ ​módulo? 35
Usa​ ​la​ ​técnica​ ​del​ ​semáforo​ ​para​ ​organizar​ ​los​ ​objetos​ ​de​ ​interfaz​ ​de​ ​una​ ​tabla 38
Puntos​ ​de​ ​inserción​ ​en​ ​todas​ ​las​ ​toolbars​ ​y​ ​menús 41

Identificadores 42
Identificadores​ ​cortos​ ​y​ ​descriptivos 42
¿Por​ ​qué​ ​usar​ ​abreviaturas? 42
¿Por​ ​qué​ ​conviene​ ​usar​ ​un​ ​diccionario​ ​de​ ​abreviaturas? 42
¿Por​ ​qué​ ​abreviaturas​ ​de​ ​3​ ​caracteres? 42
Evita​ ​el​ ​uso​ ​de​ ​preposiciones​ ​y​ ​conjunciones 44
Utiliza​ ​el​ ​guión​ ​bajo​ ​como​ ​separador​ ​de​ ​abreviaturas 44
No​ ​uses​ ​como​ ​sufijo​ ​de​ ​los​ ​identificadores​ ​el​ ​tipo​ ​de​ ​objeto 44
Usa​ ​el​ ​identificador​ ​de​ ​la​ ​tabla​ ​como​ ​prefijo​ ​de​ ​los​ ​objetos​ ​con​ ​ese​ ​origen 44
Usa​ ​identificadores​ ​que​ ​combinen​ ​origen​ ​y​ ​destino​ ​para​ ​tubos​ ​y​ ​procesos 45
Usa​ ​sufijos​ ​en​ ​los​ ​identificadores​ ​de​ ​las​ ​tablas,​ ​tablas​ ​estáticas​ ​y​ ​variables​ ​globales 46

1

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

No​ ​uses​ ​el​ ​sufijo​ ​de​ ​la​ ​tabla​ ​en​ ​los​ ​identificadores​ ​de​ ​campos​ ​e​ ​índices 46
Excepciones​ ​para​ ​que​ ​los​ ​campos​ ​punteros​ ​a​ ​tabla​ ​maestra​ ​no​ ​usen​ ​su​ ​mismo​ ​identificador 46
No​ ​te​ ​preocupes​ ​por​ ​los​ ​identificadores​ ​repetidos​ ​en​ ​el​ ​proyecto 47

Base​ ​de​ ​datos 48
Una​ ​base​ ​de​ ​datos,​ ​un​ ​responsable 48

Esquemas 48
Crea​ ​esquemas​ ​para​ ​documentar​ ​las​ ​tablas 48
Crea​ ​múltiples​ ​esquemas 49

Número​ ​de​ ​tablas​ ​y​ ​tamaño​ ​de​ ​registros 49
¿El​ ​número​ ​de​ ​tablas​ ​influye​ ​en​ ​el​ ​rendimiento? 49
¿El​ ​tamaño​ ​de​ ​registro​ ​de​ ​una​ ​tabla​ ​como​ ​influye? 49
¿Es​ ​mejor​ ​tener​ ​muchas​ ​tablas​ ​con​ ​un​ ​único​ ​tipo​ ​de​ ​registro​ ​o​ ​es​ ​mejor​ ​tener​ ​una​ ​única​ ​tabla
con​ ​múltiples​ ​tipos​ ​de​ ​registro? 50

Tipos​ ​de​ ​tablas 50
¿Cuándo​ ​es​ ​conveniente​ ​usar​ ​una​ ​tabla​ ​de​ ​tipo​ ​maestro​ ​arbolada? 50
¿Qué​ ​tamaño​ ​de​ ​campo​ ​ID​ ​debo​ ​usar​ ​en​ ​una​ ​tabla​ ​arbolada? 50
¿Cuándo​ ​es​ ​conveniente​ ​usar​ ​tablas​ ​de​ ​tipo​ ​histórico? 50
¿Y​ ​si​ ​creo​ ​siempre​ ​todas​ ​las​ ​tablas​ ​maestras? 50
¿Cuándo​ ​es​ ​conveniente​ ​usar​ ​tablas​ ​de​ ​extensión? 51
¿Cuándo​ ​es​ ​conveniente​ ​usar​ ​tablas​ ​submaestras? 51

Campos 52
¿Son​ ​todos​ ​los​ ​campos​ ​Alfa​ ​igual​ ​de​ ​rápidos? 52
¿Puedo​ ​usar​ ​campos​ ​de​ ​tipo​ ​tiempo​ ​para​ ​acumular​ ​horas,​ ​minutos​ ​y​ ​segundos? 53
¿Cuándo​ ​debo​ ​utilizar​ ​campos​ ​de​ ​tipo​ ​fórmula? 53
¿Cuándo​ ​es​ ​recomendable​ ​usar​ ​campos​ ​objeto​ ​texto? 53
Si​ ​tengo​ ​miles​ ​de​ ​objetos​ ​dibujo​ ​o​ ​texto​ ​¿Los​ ​guardo​ ​en​ ​la​ ​base​ ​de​ ​datos? 54
Guarda​ ​el​ ​contenido​ ​de​ ​diferentes​ ​campos​ ​en​ ​un​ ​solo​ ​campo​ ​objeto​ ​texto 54

Contenidos​ ​iniciales 55
Minimiza​ ​las​ ​dependencias​ ​en​ ​contenidos​ ​iniciales 55
Cuidado​ ​con​ ​los​ ​contenidos​ ​iniciales​ ​que​ ​dependen​ ​de​ ​punteros​ ​a​ ​hermanos​ ​contiguos 55
Evita​ ​el​ ​uso​ ​de​ ​funciones​ ​largas​ ​o​ ​complejas​ ​en​ ​contenidos​ ​inciales 55
Evita​ ​siempre​ ​que​ ​puedas​ ​el​ ​uso​ ​de​ ​contenido​ ​inicial​ ​JavaScript 56
En​ ​las​ ​importaciones​ ​de​ ​millones​ ​de​ ​registros​ ​optimiza​ ​el​ ​cálculo​ ​de​ ​contenidos​ ​iniciales 56

Índices 56
Crea​ ​siempre​ ​los​ ​índices​ ​de​ ​campos​ ​punteros​ ​a​ ​maestros 56
Evita​ ​el​ ​cambio​ ​de​ ​código​ ​de​ ​maestro​ ​siempre​ ​que​ ​sea​ ​posible 57
Evita​ ​los​ ​índices​ ​“duplicados”​ ​que​ ​tienen​ ​la​ ​parte​ ​izquierda​ ​común 57
¿Cuándo​ ​usar​ ​índices​ ​condicionados? 58
Los​ ​índices​ ​acepta​ ​repetidas​ ​ocupan​ ​4​ ​bytes​ ​más 59
Los​ ​índices​ ​de​ ​clave​ ​única​ ​son​ ​más​ ​rápidos 59
Usa​ ​la​ ​longitud​ ​y​ ​conversión​ ​de​ ​la​ ​parte​ ​del​ ​índice​ ​para​ ​reducir​ ​el​ ​tamaño 59
Índices​ ​de​ ​trozos​ ​y​ ​palabras 60

Índices​ ​complejos 61
Por​ ​cada​ ​índice​ ​complejo​ ​crea​ ​código​ ​para​ ​regenerarlo​ ​la​ ​primera​ ​vez​ ​que​ ​se​ ​instancia 61
¿Cuándo​ ​debo​ ​usar​ ​un​ ​índice​ ​complejo? 61

2

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Actualizaciones 62
Utiliza​ ​actualizaciones​ ​siempre​ ​que​ ​puedas 62
En​ ​las​ ​actualizaciones​ ​por​ ​valor​ ​absoluto​ ​hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​las​ ​bajas 62
Crea​ ​solo​ ​una​ ​actualización​ ​por​ ​tabla 62
Utiliza​ ​actualizaciones​ ​condicionadas 63
No​ ​utilices​ ​variables​ ​locales​ ​en​ ​la​ ​condición​ ​o​ ​fórmula​ ​de​ ​las​ ​actualizaciones 64
Evita​ ​complejas​ ​actualizaciones​ ​encadenadas​ ​que​ ​puedan​ ​ocasionar​ ​conflictos​ ​por​ ​bloqueo 64

Eventos​ ​de​ ​tabla​ ​o​ ​triggers 64
No​ ​modifiques​ ​datos​ ​en​ ​el​ ​trigger​ ​posterior 64
No​ ​dejes​ ​eventos​ ​de​ ​tabla​ ​vacíos 64

Variables​ ​globales 65
Uso​ ​controlado​ ​de​ ​las​ ​variables​ ​globales​ ​en​ ​disco 65
Las​ ​variables​ ​globales​ ​son​ ​compartidas 65

Constantes 66
Usa​ ​constantes​ ​para​ ​todos​ ​los​ ​textos​ ​que​ ​puedan​ ​requerir​ ​traducción 66
Organiza​ ​las​ ​constantes​ ​por​ ​su​ ​uso 66

Imágenes 68
Reduce​ ​el​ ​número 68
No​ ​incluyas​ ​las​ ​imágenes​ ​a​ ​través​ ​del​ ​portapapeles 68
Optimiza​ ​las​ ​imágenes​ ​antes​ ​de​ ​importarlas 68
¿Dónde​ ​ubicar​ ​los​ ​objetos​ ​dibujo? 69
Evita​ ​la​ ​información​ ​redundante,​ ​icono​ ​y​ ​texto​ ​juntos​ ​no​ ​siempre​ ​tienen​ ​sentido 69
Utiliza​ ​una​ ​librería​ ​de​ ​iconos​ ​homogénea 70
Utiliza​ ​iconos​ ​para​ ​dar​ ​soporte​ ​a​ ​High​ ​DPI 73

CSS 73
¿Qué​ ​es​ ​un​ ​sistema​ ​de​ ​diseño? 73
¿Por​ ​qué​ ​es​ ​tan​ ​importante​ ​tener​ ​un​ ​sistema​ ​de​ ​diseño? 74
Sistema​ ​de​ ​diseño.​ ​Colores 74
Sistema​ ​de​ ​diseño.​ ​Tipografía 76
Sistema​ ​de​ ​diseño.​ ​Unidad​ ​mínima 77
Sistema​ ​de​ ​diseño.​ ​Unidad​ ​de​ ​referencia 78
Sistema​ ​de​ ​diseño.​ ​Iconos 79
Sistema​ ​de​ ​diseño.​ ​Campos 80
Sistema​ ​de​ ​diseño.​ ​Botones​ ​y​ ​toolbars 81
Sistema​ ​de​ ​diseño.​ ​Etiquetas 83
¿Cuál​ ​es​ ​la​ ​clase​ ​para​ ​cada​ ​tipo​ ​de​ ​objeto,​ ​control​ ​o​ ​subcontrol? 84
Aplicar​ ​propiedades​ ​en​ ​las​ ​CSS 85
Aplicar​ ​iconos​ ​en​ ​las​ ​CSS 86
Aplicar​ ​a​ ​controles​ ​con​ ​identificadores​ ​específicos 88

Codificación 90
Usa​ ​una​ ​descripción​ ​del​ ​objeto​ ​clara,​ ​precisa​ ​y​ ​lo​ ​más​ ​breve​ ​posible 90
Comenta​ ​bien​ ​tu​ ​código 90
Aplica​ ​el​ ​mismo​ ​estilo​ ​de​ ​comentarios​ ​en​ ​todo​ ​el​ ​código 90

3

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Criterios​ ​base​ ​para​ ​aplicar​ ​a​ ​los​ ​comentarios​ ​y​ ​algunas​ ​matizaciones 91
Comentario​ ​de​ ​inicio​ ​de​ ​código 92
Comentario​ ​de​ ​log​ ​de​ ​cambios 92
Comentario​ ​antes​ ​del​ ​código​ ​y​ ​después​ ​de​ ​la​ ​descripción 92
Comentario​ ​inicial​ ​de​ ​un​ ​nuevo​ ​bloque​ ​en​ ​el​ ​mismo​ ​nivel 93
Comentario​ ​en​ ​primera​ ​línea​ ​de​ ​un​ ​bloque​ ​sangrado 93
Comentario​ ​en​ ​primera​ ​línea​ ​tras​ ​finalizar​ ​un​ ​sangrado 93
Comentario​ ​local​ ​a​ ​un​ ​línea​ ​dentro​ ​de​ ​un​ ​bloque 94
No​ ​dejes​ ​líneas​ ​en​ ​blanco 94
¿Qué​ ​pasa​ ​con​ ​el​ ​código​ ​que​ ​ya​ ​tengo​ ​escrito? 95

Procesos 96
Aplica​ ​el​ ​criterio​ ​de​ ​responsabilidad​ ​única 96
Separa​ ​interfaz​ ​de​ ​proceso 96
Evita​ ​la​ ​complejidad​ ​ciclomática 97
Las​ ​verificaciones​ ​primero 98
¿Cuándo​ ​es​ ​mejor​ ​un​ ​proceso​ ​que​ ​una​ ​función? 99
¿Cuándo​ ​debo​ ​usar​ ​el​ ​comando​ ​ejecutar​ ​proceso? 99
¿Cuándo​ ​debo​ ​usar​ ​el​ ​comando​ ​disparar​ ​objeto​ ​con​ ​un​ ​proceso? 100

Funciones 101
Acorta​ ​código 101
Ten​ ​en​ ​cuenta​ ​el​ ​número​ ​limitado​ ​de​ ​parámetros 101
Documenta​ ​los​ ​parámetros​ ​en​ ​el​ ​inicio​ ​de​ ​la​ ​función 102
Usa​ ​buenas​ ​descripciones​ ​en​ ​las​ ​variables​ ​locales​ ​que​ ​sean​ ​parámetros 102
Ten​ ​en​ ​cuenta​ ​que​ ​en​ ​1º​ ​plano​ ​genera​ ​una​ ​transacción​ ​independiente 103
¿Cuándo​ ​es​ ​mejor​ ​una​ ​función​ ​que​ ​un​ ​proceso? 103

Conexiones​ ​de​ ​evento 104
Evita​ ​el​ ​uso​ ​de​ ​la​ ​conexión​ ​pérdida​ ​de​ ​foco 104
Value​ ​changed​ ​es​ ​una​ ​buena​ ​opción 104
Mejor​ ​usar​ ​“Ratón:​ ​botón​ ​soltado”​ ​que​ ​“Ratón:​ ​botón​ ​pulsado” 104
Incompatibilidad​ ​entre​ ​“Ítem:​ ​simple​ ​clic”​ ​e​ ​“Ítem:​ ​doble​ ​clic” 105
Onclose​ ​solo​ ​está​ ​disponible​ ​en​ ​el​ ​AUTOEXEC 105
Controlar​ ​el​ ​cierre​ ​de​ ​un​ ​formulario​ ​en​ ​cuadro​ ​de​ ​diálogo 105
Controlar​ ​el​ ​cierre​ ​de​ ​un​ ​formulario​ ​en​ ​vista 105

Manejadores​ ​de​ ​evento 106
Un​ ​manejador​ ​puede​ ​llamar​ ​a​ ​otro​ ​del​ ​mismo​ ​objeto​ ​salvo​ ​en​ ​el​ ​marco​ ​AUTOEXEC 106
Las​ ​variables​ ​locales​ ​son​ ​compartidas​ ​entre​ ​los​ ​manejadores 106
Las​ ​cestas​ ​locales​ ​son​ ​compartidas​ ​entre​ ​los​ ​manejadores 106
Aplica​ ​el​ ​criterio​ ​de​ ​responsabilidad​ ​única​ ​y​ ​evita​ ​código​ ​repetido 106

Barra​ ​de​ ​menú 106
No​ ​se​ ​pueden​ ​añadir​ ​o​ ​quitar​ ​opciones,​ ​pero​ ​sí​ ​limpiar​ ​y​ ​volver​ ​a​ ​construir 108

Menús 108
Minimiza​ ​las​ ​opciones​ ​de​ ​tus​ ​menús 109
El​ ​orden​ ​de​ ​las​ ​opciones​ ​de​ ​menú​ ​es​ ​la​ ​clave 109

4

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Crea​ ​menú​ ​de​ ​botón​ ​para​ ​cada​ ​maestro 110
Utiliza​ ​el​ ​mismo​ ​icono​ ​en​ ​todos​ ​los​ ​botones​ ​de​ ​menú 111

Toolbars 111
Utiliza​ ​iconos 112
Si​ ​desarrollas​ ​una​ ​aplicación​ ​estándar,​ ​añade​ ​una​ ​acción​ ​con​ ​punto​ ​de​ ​inserción​ ​en​ ​cada​ ​menú
113
Agrupa​ ​los​ ​botones​ ​por​ ​funcionalidad 114

Acciones 114
Evita​ ​el​ ​uso​ ​de​ ​iconos 115

Marco​ ​AUTOEXEC 115
Aplicar​ ​CSS​ ​en​ ​el​ ​evento​ ​Pre-Inicialización 116
Permitir​ ​configurar​ ​que​ ​la​ ​barra​ ​de​ ​estado​ ​se​ ​puede​ ​mostrar​ ​u​ ​ocultar 116

Formularios​ ​de​ ​edición 117
Identificadores 117
Resolución​ ​mínima 118
Tamaño​ ​del​ ​formulario 118
Tamaño​ ​de​ ​los​ ​subformularios 118
Tamaños​ ​y​ ​alineamientos​ ​de​ ​los​ ​tipos​ ​de​ ​control 119
Layouts 119
Título​ ​del​ ​formulario 121
Título​ ​de​ ​la​ ​pestaña 122
¿Cuándo​ ​en​ ​vista​ ​o​ ​en​ ​cuadro​ ​de​ ​diálogo? 122
Si​ ​lo​ ​disparas​ ​desde​ ​un​ ​proceso​ ​sale​ ​en​ ​cuadro​ ​de​ ​diálogo 123
Mostrar​ ​un​ ​formulario​ ​en​ ​vista​ ​lanzado​ ​desde​ ​un​ ​proceso 123

Formularios​ ​de​ ​menú 123
Identificadores 124
Layouts 125
Título​ ​de​ ​la​ ​pestaña 128

Rejillas 128
Identificadores 129
Anchos​ ​y​ ​alineamientos​ ​de​ ​columnas​ ​en​ ​función​ ​del​ ​tipo​ ​de​ ​dato 129
Crea​ ​rejillas​ ​específicas​ ​para​ ​uso​ ​en​ ​formularios​ ​de​ ​maestros 130

Alternadores​ ​de​ ​lista 131
Usa​ ​un​ ​alternador​ ​en​ ​lugar​ ​de​ ​poner​ ​la​ ​rejilla​ ​directamente 131
Reducimos​ ​la​ ​cantidad​ ​de​ ​código 131

Calidad 131
Revisa​ ​los​ ​objetos​ ​no​ ​usados​ ​directamente​ ​con​ ​la​ ​extensión 132
Revisa​ ​los​ ​errores​ ​con​ ​el​ ​inspector​ ​en​ ​todos​ ​los​ ​proyectos 133
Revisa​ ​la​ ​ortografía​ ​con​ ​la​ ​extensión 134

5

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Una​ ​primera​ ​versión​ ​con​ ​mucho​ ​futuro
Esta​ ​es​ ​la​ ​primera​ ​versión​ ​de​ ​este​ ​documento​ ​que​ ​nos​ ​gustaría​ ​que​ ​siga​ ​creciendo​ ​y​ ​evolucionando.

Deseamos​ ​contar​ ​con​ ​tu​ ​participación​ ​ya​ ​que​ ​este​ ​documento​ ​ha​ ​nacido​ ​con​ ​la​ ​idea​ ​de​ ​que​ ​pueda
convertirse​ ​en​ ​tu​ ​herramienta​ ​de​ ​trabajo,​ ​tanto​ ​si​ ​eres​ ​un​ ​profesional​ ​autónomo​ ​como​ ​si​ ​formas​ ​parte​ ​de
un​ ​equipo​ ​de​ ​desarrollo.

Estaremos​ ​encantados​ ​de​ ​saber​ ​que​ ​has​ ​usado​ ​este​ ​documento​ ​directamente​ ​o​ ​que​ ​los​ ​has​ ​utilizado
como​ ​base​ ​para​ ​crear​ ​tu​ ​propia​ ​guía​ ​de​ ​estilo​ ​de​ ​desarrollo​ ​de​ ​aplicaciones​ ​con​ ​Velneo.

Sabemos​ ​que​ ​aún​ ​nos​ ​queda​ ​mucho​ ​para​ ​que​ ​esta​ ​documento​ ​pueda​ ​llegar​ ​a​ ​publicarse​ ​como​ ​un​ ​libro,​ ​por
eso​ ​pedimos​ ​tu​ ​colaboración​ ​a​ ​la​ ​vez​ ​que​ ​tu​ ​comprensión​ ​para​ ​que​ ​sepas​ ​perdonarnos​ ​todas​ ​las​ ​erratas
que​ ​encuentres.

Envíanos​ ​tus​ ​comentarios,​ ​correcciones​ ​y​ ​sugerencias​ ​a​ ​​velneo@velneo.com

6

mailto:velneo@velneo.com

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

¿Qué​ ​características​ ​tienen​ ​los​ ​buenos​ ​programadores?

● Un​ ​buen​ ​programador​ ​sabe​ ​trabajar​ ​en​ ​equipo.
● Desarrolla​ ​código​ ​fácil​ ​de​ ​mantener​ ​y​ ​entender.
● Consigue​ ​ser​ ​productivo​ ​tanto​ ​él​ ​como​ ​su​ ​equipo.
● Comparte​ ​su​ ​conocimiento​ ​y​ ​su​ ​código.
● Ayuda​ ​a​ ​formarse​ ​a​ ​otros​ ​compañeros.
● Colabora​ ​en​ ​la​ ​creación​ ​y​ ​mantenimiento​ ​de​ ​una​ ​guía​ ​de​ ​estilo.

¿A​ ​quién​ ​está​ ​orientado​ ​este​ ​documento?
A​ ​desarrolladores​ ​que​ ​desean​ ​utilizar​ ​un​ ​sistema​ ​diseñado​ ​para​ ​aprovechar​ ​todas​ ​las​ ​bondades​ ​de​ ​la
plataforma​ ​Velneo,​ ​facilitando​ ​una​ ​forma​ ​de​ ​programación​ ​probada​ ​y​ ​fiable​ ​que​ ​acelera​ ​tu​ ​productividad​ ​al
evitar​ ​tener​ ​que​ ​pensar​ ​en​ ​muchos​ ​aspectos​ ​del​ ​día​ ​a​ ​día​ ​de​ ​un​ ​programador.

¿Qué​ ​me​ ​aporta​ ​utilizar​ ​una​ ​guía​ ​de​ ​estilo?
Aporta​ ​múltiples​ ​ventajas​ ​como:

● No​ ​pensar.
○ Cuando​ ​tenga​ ​que​ ​programar​ ​objetos​ ​y​ ​el​ ​código.
○ Cuando​ ​tenga​ ​que​ ​encontrar​ ​un​ ​objeto,​ ​subobjeto​ ​o​ ​código.
○ Cuando​ ​tenga​ ​que​ ​organizar​ ​los​ ​nuevos​ ​objetos.
○ Cuando​ ​tenga​ ​que​ ​poner​ ​un​ ​identificador.
○ En​ ​general,​ ​en​ ​cualquier​ ​acción​ ​de​ ​desarrollo​ ​que​ ​deba​ ​ser​ ​mecánica.

● Todos​ ​los​ ​programadores​ ​de​ ​un​ ​equipo​ ​desarrollamos​ ​igual.

○ Poder​ ​entender​ ​el​ ​código​ ​de​ ​cualquier​ ​programador​ ​me​ ​​ ​aportará​ ​un​ ​importante​ ​ahorro​ ​de
tiempo.

○ Que​ ​el​ ​resto​ ​del​ ​equipo​ ​entienda​ ​mi​ ​código​ ​sin​ ​tener​ ​que​ ​explicarlo.
○ Que​ ​al​ ​editar​ ​cualquier​ ​objeto​ ​me​ ​sienta​ ​cómodo,​ ​como​ ​lo​ ​estaría​ ​con​ ​cualquier​ ​objeto​ ​que

hubiese​ ​desarrollado​ ​yo.
○ En​ ​definitiva,​ ​conseguimos​ ​que​ ​nuestras​ ​aplicaciones​ ​sean​ ​más​ ​fáciles​ ​de​ ​mantener,​ ​y​ ​por

lo​ ​tanto​ ​hagan​ ​más​ ​rentable​ ​mis​ ​horas​ ​de​ ​trabajo.

¿Y​ ​si​ ​hay​ ​aspectos​ ​de​ ​esta​ ​guía​ ​que​ ​no​ ​me​ ​gustan?
El​ ​motivo​ ​principal​ ​por​ ​el​ ​que​ ​entregamos​ ​esta​ ​guía​ ​en​ ​formato​ ​editable​ ​Word​ ​es​ ​que​ ​la​ ​adaptes​ ​a​ ​tus
criterios​ ​o​ ​los​ ​de​ ​tu​ ​equipo​ ​de​ ​desarrollo.​ ​En​ ​el​ ​peor​ ​de​ ​los​ ​casos​ ​esta​ ​guía​ ​supondrá​ ​un​ ​estupendo​ ​guión
sobre​ ​el​ ​que​ ​podrás​ ​construir​ ​tu​ ​propia​ ​guía​ ​de​ ​estilo​ ​de​ ​programación.

¿Qué​ ​pasa​ ​con​ ​mi​ ​creatividad?​ ​¿Se​ ​pierde​ ​al​ ​usar​ ​una​ ​guía​ ​de​ ​estilo?
Al​ ​contrario,​ ​usar​ ​una​ ​guía​ ​de​ ​estilo​ ​te​ ​va​ ​a​ ​permitir​ ​ser​ ​más​ ​productivo​ ​en​ ​la​ ​parte​ ​que​ ​menos​ ​valor​ ​aporta
a​ ​tu​ ​programación.​ ​No​ ​tener​ ​que​ ​estar​ ​pensando​ ​en​ ​los​ ​criterios​ ​a​ ​aplicar​ ​te​ ​permite​ ​concentrarte​ ​en​ ​crear
objetos​ ​con​ ​el​ ​mejor​ ​diseño,​ ​usabilidad,​ ​el​ ​código​ ​más​ ​optimizado​ ​posible.​ ​Es​ ​en​ ​esos​ ​aspectos​ ​donde​ ​la

7

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

creatividad​ ​de​ ​los​ ​desarrolladores​ ​debe​ ​brillar​ ​y​ ​no​ ​en​ ​aspectos​ ​que​ ​perjudiquen​ ​el​ ​trabajo​ ​en​ ​equipo​ ​o​ ​la
mantenibilidad​ ​de​ ​la​ ​aplicación.

¿Por​ ​qué​ ​es​ ​tan​ ​importante​ ​el​ ​diseño​ ​en​ ​el​ ​desarrollo​ ​de​ ​aplicaciones?
Comenzaré​ ​por​ ​dar​ ​una​ ​definición​ ​de​ ​diseño​ ​con​ ​una​ ​frase​ ​de​ ​Charles​ ​Eames​ ​en​ ​respuesta​ ​a​ ​una​ ​entrevista
en​ ​1970​ ​en​ ​la​ ​que​ ​decía​ ​lo​ ​siguiente:

“El​ ​diseño​ ​es​ ​un​ ​plan​ ​para​ ​disponer​ ​elementos
​ ​de​ ​la​ ​mejor​ ​forma​ ​posible​ ​para​ ​alcanzar​ ​un​ ​fin​ ​específico”

El​ ​diseño​ ​no​ ​tiene​ ​nada​ ​que​ ​ver​ ​con​ ​estas​ ​frases:

“Pon​ ​un​ ​logotipo​ ​bonito”
“le​ ​gusta​ ​a​ ​mi​ ​mujer,​ ​y​ ​ya​ ​sabes​ ​que​ ​las​ ​mujeres​ ​siempre​ ​tienen​ ​buen​ ​gusto”

“El​ ​diseño​ ​es​ ​una​ ​cuestión​ ​de​ ​gustos​ ​y​ ​estética”
“El​ ​diseño​ ​no​ ​es​ ​lo​ ​mío,​ ​dibujo​ ​muy​ ​mal”

Si​ ​analizamos​ ​bien​ ​una​ ​aplicación​ ​nos​ ​daremos​ ​cuenta​ ​que​ ​está​ ​compuesta​ ​por​ ​muchas​ ​piezas,​ ​unas​ ​son
visibles​ ​para​ ​el​ ​usuario​ ​y​ ​otras​ ​no:

● Base​ ​de​ ​datos:​ ​Tablas,​ ​índices,​ ​actualizaciones,​ ​etc.
● Código:​ ​Procesos,​ ​funciones,​ ​manejadores,​ ​etc.
● Interfaz:​ ​Formularios,​ ​rejillas,​ ​informes,​ ​etc.

Lo​ ​interesante​ ​de​ ​todo​ ​esto​ ​es​ ​que​ ​el​ ​diseño​ ​se​ ​debe​ ​aplicar​ ​a​ ​todas​ ​las​ ​piezas​ ​que​ ​forman​ ​una​ ​aplicación,
no​ ​exclusivamente​ ​a​ ​las​ ​que​ ​tengan​ ​que​ ​ver​ ​con​ ​la​ ​interfaz.​ ​Es​ ​en​ ​este​ ​punto​ ​donde​ ​trataremos​ ​de​ ​que​ ​este
documento​ ​sirva​ ​para​ ​ayudarnos​ ​a​ ​analizar​ ​a​ ​fondo​ ​todas​ ​y​ ​cada​ ​una​ ​de​ ​las​ ​decisiones​ ​que​ ​tenemos​ ​que
tomar​ ​en​ ​el​ ​desarrollo​ ​de​ ​una​ ​aplicación,​ ​ya​ ​que​ ​todas​ ​afectan​ ​al​ ​resultado​ ​final​ ​de​ ​la​ ​misma.​ ​Aspectos
como​ ​la​ ​optimización​ ​afecta​ ​directamente​ ​a​ ​conseguir​ ​una​ ​buena​ ​experiencia​ ​de​ ​usuario,​ ​un​ ​buen​ ​diseño
de​ ​formularios​ ​ayuda​ ​a​ ​mejorar​ ​la​ ​usabilidad​ ​y​ ​permitirá​ ​al​ ​usuario​ ​ser​ ​capaz​ ​de​ ​moverse​ ​por​ ​la​ ​aplicación
sin​ ​necesidad​ ​de​ ​consultar​ ​manuales​ ​o​ ​vídeos​ ​de​ ​ayuda​ ​para​ ​entender​ ​cómo​ ​funciona.

8

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

El​ ​buen​ ​diseño
La​ ​palabra​ ​diseño​ ​es​ ​clave​ ​en​ ​este​ ​documento​ ​y​ ​para​ ​ir​ ​entrando​ ​en​ ​materia,​ ​vamos​ ​a​ ​enumerar​ ​los​ ​10
principios​ ​del​ ​diseño​ ​que​ ​declaró​ ​Dieter​ ​Rams.

¿Quién​ ​es​ ​Dieter​ ​Rams?

Dieter​ ​Rams​ ​es​ ​un​ ​famoso​ ​diseñador​ ​alemán​ ​de​ ​la​ ​década​ ​de​ ​los​ ​50​ ​/​ ​60,​ ​muy​ ​conocido​ ​por​ ​sus​ ​diseños
para​ ​Braum​ ​y​ ​Vitsœ.​ ​Su​ ​manera​ ​de​ ​ver​ ​el​ ​diseño,​ ​con​ ​la​ ​máxima​ ​“Menos,​ ​pero​ ​con​ ​mejor​ ​ejecución”​ ​y​ ​muy
centrado​ ​en​ ​la​ ​funcionalidad,​ ​marcó​ ​a​ ​otros​ ​muchos​ ​diseñadores,​ ​como​ ​es​ ​el​ ​caso​ ​de​ ​Jonathan​ ​Ive​ ​el
actual​ ​Jefe​ ​de​ ​diseño​ ​de​ ​Apple.​ ​Dieter​ ​enunció​ ​lo​ ​que​ ​para​ ​él​ ​son​ ​los​ ​principios​ ​de​ ​diseño.

10​ ​principios​ ​del​ ​diseño​ ​según​ ​Dieter​ ​Rams

Principio Descripción

El​ ​buen​ ​diseño​ ​es​ ​innovador. El​ ​diseño​ ​tiene​ ​una​ ​innovación​ ​ilimitada,​ ​porque
cada​ ​nuevo​ ​avance​ ​tecnológico,​ ​permite​ ​crear
nuevos​ ​productos​ ​mejor​ ​diseñados.

El​ ​buen​ ​diseño​ ​hace​ ​útil​ ​al​ ​producto. El​ ​objetivo​ ​primordial​ ​de​ ​un​ ​producto​ ​es​ ​su
utilidad.​ ​El​ ​diseño​ ​(la​ ​forma)​ ​debe​ ​ser
primordialmente​ ​práctico​ ​y​ ​de​ ​manera​ ​secundaria
tiene​ ​que​ ​satisfacer​ ​ciertos​ ​criterios​ ​de​ ​carácter
psicológico​ ​y​ ​estético,​ ​evitando​ ​de​ ​estos​ ​criterios
las​ ​características​ ​que​ ​no​ ​potencian​ ​su​ ​utilidad.

El​ ​buen​ ​diseño​ ​es​ ​estético. El​ ​diseño​ ​bien​ ​ejecutado​ ​no​ ​carece​ ​de​ ​belleza.​ ​La
calidad​ ​estética​ ​de​ ​un​ ​producto​ ​forma​ ​parte
integral​ ​de​ ​su​ ​utilidad​ ​ya​ ​que​ ​los​ ​productos
utilizados​ ​cotidianamente​ ​tienden​ ​a​ ​tener​ ​un
efecto​ ​indirecto​ ​en​ ​las​ ​personas​ ​y​ ​su​ ​bienestar.

9

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

El​ ​buen​ ​diseño​ ​hace​ ​al​ ​producto​ ​comprensible. Un​ ​buen​ ​diseño​ ​simplifica​ ​la​ ​estructura​ ​del
producto​ ​y​ ​lo​ ​predispone​ ​a​ ​expresar​ ​claramente​ ​su
función​ ​mediante​ ​la​ ​intuición​ ​del​ ​usuario.
Idealmente​ ​su​ ​propósito​ ​será​ ​intuitivo​ ​para​ ​todo
usuario.

El​ ​buen​ ​diseño​ ​es​ ​discreto. Para​ ​que​ ​un​ ​producto​ ​sea​ ​discreto,​ ​tanto​ ​él​ ​como
su​ ​diseño​ ​deben​ ​ser​ ​sobrios​ ​y​ ​neutros​ ​(a​ ​la​ ​vez).
Un​ ​producto​ ​no​ ​debe​ ​ser​ ​una​ ​obra​ ​de​ ​arte​ ​o​ ​un
objeto​ ​de​ ​decoración,​ ​que​ ​confunda​ ​y​ ​distorsione
su​ ​uso,​ ​debe​ ​ser​ ​estéticamente​ ​atractivo,​ ​sí,​ ​pero
debe​ ​carecer​ ​de​ ​evocaciones.

El​ ​buen​ ​diseño​ ​es​ ​honesto. Un​ ​diseño​ ​honesto​ ​nunca​ ​intenta​ ​falsificar​ ​el
auténtico​ ​valor​ ​e​ ​innovación​ ​del​ ​producto​ ​dado.
Asimismo,​ ​un​ ​diseño​ ​verdaderamente​ ​honesto
nunca​ ​trata​ ​de​ ​manipular​ ​al​ ​consumidor​ ​mediante
promesas​ ​de​ ​una​ ​utilidad​ ​apócrifa,​ ​inexistente​ ​o
más​ ​allá​ ​de​ ​la​ ​realidad​ ​física​ ​del​ ​producto.

El​ ​buen​ ​diseño​ ​perdura​ ​en​ ​el​ ​tiempo. Toda​ ​moda​ ​es​ ​inherentemente​ ​pasajera​ ​y
subjetiva.​ ​La​ ​correcta​ ​ejecución​ ​del​ ​buen​ ​diseño​ ​da
como​ ​resultado​ ​productos​ ​inherentemente
objetivos​ ​y​ ​anacrónicamente​ ​útiles.​ ​Estas
cualidades​ ​se​ ​ven​ ​reflejadas​ ​cuando​ ​los​ ​usuarios
tienen​ ​la​ ​tendencia​ ​de​ ​atesorar​ ​y​ ​favorecer
aquellos​ ​productos​ ​bien​ ​diseñados​ ​incluso​ ​en
aquellas​ ​sociedades​ ​cuyas​ ​tendencias​ ​de
consumo​ ​claramente​ ​favorecen​ ​productos
desechables.

El​ ​buen​ ​diseño​ ​es​ ​amigo​ ​del​ ​medioambiente. Un​ ​buen​ ​diseño​ ​debe​ ​contribuir​ ​a​ ​la​ ​preservación
del​ ​medio​ ​ambiente​ ​mediante​ ​la​ ​conservación​ ​de
los​ ​recursos​ ​y​ ​la​ ​minimización​ ​de​ ​la
contaminación​ ​física​ ​y​ ​visual​ ​durante​ ​el​ ​ciclo​ ​de
vida​ ​del​ ​producto.

El​ ​buen​ ​diseño​ ​es​ ​consecuente​ ​con​ ​el​ ​mínimo
detalle.

Menos,​ ​pero​ ​con​ ​mejor​ ​ejecución.​ ​Este​ ​enfoque
fomenta​ ​los​ ​aspectos​ ​fundamentales​ ​de​ ​cada
producto​ ​y​ ​por​ ​lo​ ​tanto​ ​evita​ ​arrastrarlos
torpemente​ ​con​ ​todo​ ​aquello​ ​que​ ​no​ ​es​ ​esencial.​ ​El
resultado​ ​ideal​ ​es​ ​un​ ​producto​ ​de​ ​mayor​ ​pureza​ ​y
simplicidad.

El​ ​buen​ ​diseño​ ​es​ ​el​ ​menor​ ​diseño​ ​posible. Menos,​ ​pero​ ​con​ ​mejor​ ​ejecución,​ ​este​ ​enfoque
fomenta​ ​los​ ​aspectos​ ​fundamentales​ ​de​ ​cada
producto​ ​y​ ​por​ ​lo​ ​tanto​ ​evita​ ​lastrarlos​ ​torpemente
con​ ​todo​ ​aquello​ ​que​ ​no​ ​es​ ​esencial.​ ​El​ ​resultado
ideal​ ​es​ ​un​ ​producto​ ​de​ ​mayor​ ​pureza​ ​y
simplicidad.

Para​ ​terminar​ ​hacemos​ ​mención​ ​a​ ​una​ ​frase​ ​de​ ​Antoine​ ​de​ ​Saint​ ​Exupéry.

“La​ ​perfección​ ​no​ ​se​ ​alcanza​ ​cuando​ ​no​ ​hay​ ​nada​ ​más​ ​que​ ​añadir,

10

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

sino​ ​cuando​ ​no​ ​hay​ ​nada​ ​que​ ​quitar”

Principios​ ​universales​ ​de​ ​diseño​ ​&​ ​Experiencia
Para​ ​la​ ​creación​ ​de​ ​esta​ ​guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo​ ​no​ ​hemos​ ​inventado​ ​nada,​ ​al​ ​contrario,​ ​nos
hemos​ ​apoyado​ ​en​ ​dos​ ​fuentes​ ​clave:​ ​los​ ​principios​ ​básicos​ ​de​ ​diseño​ ​y​ ​en​ ​la​ ​experiencia​ ​acumulada
durante​ ​2​ ​décadas​ ​en​ ​el​ ​desarrollo​ ​de​ ​aplicaciones​ ​empresariales​ ​con​ ​plataformas​ ​de​ ​desarrollo​ ​Velneo.

Utilizaremos​ ​los​ ​principios​ ​universales​ ​de​ ​diseño​ ​para​ ​argumentar​ ​las​ ​decisiones​ ​que​ ​se​ ​han​ ​tomado​ ​en​ ​el
desarrollo​ ​de​ ​aplicaciones​ ​Velneo​ ​documentadas​ ​en​ ​este​ ​guía.

Los​ ​principios​ ​universales​ ​de​ ​diseño​ ​no​ ​son​ ​conjeturas,​ ​son​ ​reales​ ​y​ ​están​ ​basados​ ​en​ ​investigaciones
sólidas,​ ​por​ ​ese​ ​motivo​ ​funcionan.

Hemos​ ​utilizado​ ​como​ ​base​ ​de​ ​los​ ​principios​ ​universales​ ​de​ ​diseño​ ​el​ ​libro​ ​“​Principios​ ​Universales​ ​de
Diseño​”​ ​de​ ​William​ ​Lidwell,​ ​Kritina​ ​Holden​ ​y​ ​Jill​ ​Butler​ ​publicado​ ​por​ ​BLUME.

Principios​ ​universales​ ​de​ ​diseño​ ​con​ ​ejemplos​ ​de​ ​aplicación

A​ ​lo​ ​largo​ ​del​ ​documento​ ​haremos​ ​hincapié​ ​en​ ​los​ ​diferentes​ ​principios​ ​de​ ​diseño​ ​que​ ​veremos​ ​aplicados
en​ ​esta​ ​guía​ ​con​ ​su​ ​descripción​ ​y​ ​correspondiente​ ​ejemplo​ ​práctico.

11

https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0ahUKEwjdpa-Ln8DXAhXLEOwKHVkmDgoQFghEMAk&url=https%3A%2F%2Fwww.amazon.es%2FPrincipios-universales-dise%25C3%25B1o-W-Lidwell%2Fdp%2F8480765321&usg=AOvVaw3B6GmzvMynqWP-sMseimyW
https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0ahUKEwjdpa-Ln8DXAhXLEOwKHVkmDgoQFghEMAk&url=https%3A%2F%2Fwww.amazon.es%2FPrincipios-universales-dise%25C3%25B1o-W-Lidwell%2Fdp%2F8480765321&usg=AOvVaw3B6GmzvMynqWP-sMseimyW

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Principios​ ​universales​ ​de​ ​diseño Ejemplo​ ​de​ ​aplicación

El​ ​efecto​ ​de​ ​exposición
La​ ​exposición​ ​repetida​ ​a​ ​estímulos​ ​hacia​ ​los
cuales​ ​se​ ​tienen​ ​sentimientos​ ​neutros​ ​aumenta​ ​el
atractivo​ ​de​ ​dichos​ ​estímulos.

No​ ​te​ ​dejes​ ​guiar​ ​por​ ​la​ ​primera​ ​impresión​ ​al​ ​ver​ ​el
diseño​ ​de​ ​una​ ​aplicación.​ ​Espera​ ​a​ ​usarla​ ​durante
varios​ ​días​ ​hasta​ ​que​ ​tus​ ​estímulos​ ​estén​ ​basados
en​ ​la​ ​repetición.

Aplicar​ ​diseño​ ​atemporal​ ​y​ ​duradero​ ​normalmente
se​ ​percibe​ ​como​ ​simple​ ​y​ ​poco​ ​interesantes,​ ​pero
con​ ​el​ ​uso​ ​se​ ​percibe​ ​la​ ​belleza​ ​de​ ​la
funcionalidad.

​ ​

Regla​ ​del​ ​80/20
El​ ​80%​ ​del​ ​empleo​ ​de​ ​un​ ​producto​ ​implica​ ​el​ ​20%
de​ ​sus​ ​características.

Dedícale​ ​el​ ​80%​ ​del​ ​tiempo​ ​de​ ​desarrollo​ ​a​ ​ese
20%​ ​de​ ​tu​ ​aplicación.

Si​ ​una​ ​funcionalidad​ ​no​ ​es​ ​útil​ ​para​ ​el​ ​80%​ ​de​ ​las
empresas​ ​no​ ​debería​ ​estar​ ​incluida​ ​en​ ​el​ ​núcleo
estándar​ ​de​ ​tus​ ​aplicaciones.

​ ​

Alineación
Los​ ​elementos​ ​de​ ​un​ ​diseño​ ​deben​ ​estar​ ​alineados
entre​ ​sí.​ ​De​ ​este​ ​modo​ ​se​ ​logra​ ​transmitir​ ​unidad​ ​y
cohesión.

Utiliza​ ​la​ ​cuadrícula​ ​en​ ​el​ ​diseño​ ​de​ ​tus
formularios.​ ​Aplica​ ​la​ ​misma​ ​alineación​ ​al​ ​mismo
tipo​ ​de​ ​dato.

12

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Fragmentación
Técnica​ ​que​ ​consiste​ ​en​ ​combinar​ ​unidades​ ​de
información​ ​en​ ​un​ ​número​ ​limitado​ ​de​ ​unidades​ ​y
fragmentos,​ ​de​ ​modo​ ​que​ ​la​ ​información​ ​resulte
más​ ​fácil​ ​de​ ​procesar​ ​y​ ​recordar.

Debemos​ ​ser​ ​rigurosos​ ​en​ ​la​ ​aplicación​ ​del
encarpetado​ ​de​ ​objetos​ ​de​ ​los​ ​proyectos​ ​para
facilitar​ ​su​ ​organización​ ​y​ ​localización.

Color
El​ ​color​ ​se​ ​emplea​ ​en​ ​diseño​ ​para​ ​atraer​ ​la
atención,​ ​agrupar​ ​elementos,​ ​indicar​ ​significados​ ​y
realzar​ ​la​ ​estética.

El​ ​color​ ​ayuda​ ​a​ ​que​ ​el​ ​usuario​ ​localice​ ​sin
esfuerzo​ ​cognitivo​ ​el​ ​botón​ ​de​ ​llamada​ ​a​ ​la​ ​acción,
como​ ​“Aceptar”​ ​en​ ​los​ ​formularios.

El​ ​borde​ ​del​ ​control​ ​de​ ​edición​ ​con​ ​el​ ​foco​ ​ayuda​ ​a
su​ ​localización​ ​de​ ​forma​ ​rápida​ ​y​ ​precisa.

13

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Confirmación
Técnica​ ​para​ ​evitar​ ​acciones​ ​no​ ​intencionadas,
que​ ​consiste​ ​en​ ​exigir​ ​la​ ​verificación​ ​de​ ​las
acciones​ ​antes​ ​de​ ​llevarlas​ ​a​ ​cabo.

El​ ​cuadro​ ​de​ ​diálogo​ ​de​ ​confirmación​ ​que​ ​se
muestra​ ​antes​ ​de​ ​la​ ​eliminación​ ​de​ ​un​ ​registro​ ​al
pulsar​ ​el​ ​botón​ ​eliminar​ ​en​ ​un​ ​formulario.

Consistencia
La​ ​facilidad​ ​de​ ​uso​ ​de​ ​un​ ​sistema​ ​mejora​ ​cuando
las​ ​partes​ ​similares​ ​del​ ​mismo​ ​se​ ​expresan​ ​de
modo​ ​semejantes.

Todos​ ​los​ ​formularios​ ​deben​ ​mantener​ ​los​ ​títulos,
cabecear,​ ​detalle​ ​​ ​y​ ​botones​ ​en​ ​posiciones
similares.

Limitación
Método​ ​para​ ​reducir​ ​las​ ​acciones​ ​que​ ​se​ ​pueden
llevar​ ​a​ ​cabo​ ​en​ ​un​ ​sistema.

La​ ​aplicación​ ​de​ ​permisos​ ​para​ ​tener​ ​acceso​ ​a
opciones​ ​de​ ​menús​ ​o​ ​a​ ​la​ ​edición​ ​de​ ​registros.

Opciones​ ​o​ ​datos​ ​solo​ ​disponibles​ ​para
supervisores.

14

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Control
El​ ​nivel​ ​de​ ​control​ ​proporcionado​ ​por​ ​un​ ​sistema
debe​ ​guardar​ ​relación​ ​a​ ​la​ ​eficacia​ ​y​ ​los​ ​niveles​ ​de
experiencia​ ​de​ ​las​ ​personas​ ​que​ ​utilicen​ ​dicho
sistema.

Ocultar​ ​opciones​ ​avanzadas​ ​o​ ​datos​ ​de​ ​un
formulario​ ​a​ ​los​ ​que​ ​se​ ​accede​ ​con​ ​un​ ​botón​ ​que
evita​ ​que​ ​los​ ​usuarios​ ​con​ ​menos​ ​experiencia​ ​vean
demasiados​ ​en​ ​pantalla.

Diseño​ ​por​ ​comité
Proceso​ ​de​ ​diseño​ ​basado​ ​en​ ​la​ ​creación​ ​de
consenso,​ ​toma​ ​de​ ​decisiones​ ​en​ ​grupo​ ​e​ ​iteración
exhaustiva.

Maquetación​ ​de​ ​formularios,​ ​tamaños​ ​mínimos​ ​de
controles,​ ​anchos​ ​de​ ​columnas​ ​de​ ​rejillas​ ​o​ ​el
sistema​ ​de​ ​comentarios​ ​del​ ​código​ ​en​ ​procesos.

Punto​ ​de​ ​entrada
Tenemos​ ​tendencia​ ​a​ ​juzgar​ ​los​ ​libros​ ​por​ ​sus
cubiertas,​ ​los​ ​edificios​ ​por​ ​sus​ ​vestíbulos​ ​y​ ​las
webs​ ​por​ ​su​ ​portada.

Diseña​ ​la​ ​inferfaz​ ​para​ ​que​ ​resulte​ ​sencilla​ ​y
elegante.​ ​Mejor​ ​diseñar​ ​con​ ​tendencia​ ​al
minimalismo​ ​que​ ​a​ ​la​ ​sobrecarga​ ​de​ ​contenido.

15

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Ley​ ​de​ ​Fitts
El​ ​tiempo​ ​para​ ​desplazarse​ ​hasta​ ​un​ ​objeto​ ​es​ ​una
función​ ​del​ ​tamaño​ ​de​ ​dicho​ ​objeto​ ​y​ ​de​ ​la
distancia​ ​hasta​ ​el​ ​mismo.

Aplica​ ​un​ ​tamaño​ ​generoso​ ​a​ ​los​ ​botones​ ​y​ ​aplicar
un​ ​orden​ ​a​ ​los​ ​controles​ ​que​ ​reduzca​ ​el​ ​uso​ ​del
ratón​ ​o​ ​la​ ​distancia​ ​al​ ​objetivo.

Utiliza​ ​menús​ ​contextuales​ ​o​ ​menús​ ​de​ ​botón​ ​para
conseguir​ ​que​ ​el​ ​usuario​ ​no​ ​tenga​ ​que​ ​desplazarse
para​ ​ejecutar​ ​acciones.

Cinco​ ​modos​ ​de​ ​organizar​ ​la​ ​información
Categoría,​ ​tiempo,​ ​ubicación,​ ​orden​ ​alfabético​ ​y
continuo.

Usa​ ​el​ ​orden​ ​alfabético​ ​por​ ​el​ ​nombre​ ​en​ ​maestros
y​ ​con​ ​claves​ ​alfabéticas,​ ​aplica​ ​orden​ ​temporal
para​ ​documentos​ ​o​ ​registros​ ​con​ ​fecha​ ​y​ ​hora.

16

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Equilibrio​ ​entre​ ​flexibilidad​ ​y​ ​eficacia
A​ ​medida​ ​que​ ​aumenta​ ​la​ ​flexibilidad​ ​de​ ​un
sistema,​ ​disminuye​ ​su​ ​eficacia.

Utiliza​ ​el​ ​menor​ ​número​ ​posible​ ​de​ ​opciones​ ​de
menú.​ ​Busca​ ​el​ ​equilibrio​ ​entre​ ​las​ ​funcionalidades
configurables​ ​y​ ​la​ ​complejidad​ ​de​ ​un​ ​exceso​ ​de
configuración.

La​ ​forma​ ​sigue​ ​a​ ​la​ ​función
La​ ​belleza​ ​de​ ​un​ ​diseño​ ​constituye​ ​el​ ​resultado​ ​de
la​ ​pureza​ ​de​ ​su​ ​función​ ​(en​ ​la​ ​naturaleza​ ​pasa​ ​lo
contrario​ ​la​ ​función​ ​sigue​ ​a​ ​la​ ​forma)

Elimina​ ​los​ ​elementos​ ​redundantes​ ​como​ ​icono​ ​y
texto​ ​o​ ​que​ ​no​ ​aportan​ ​funcionalidad​ ​de​ ​forma
sencilla.

Es​ ​mejor​ ​que​ ​el​ ​usuario​ ​tenga​ ​una​ ​única​ ​forma​ ​de
hacer​ ​las​ ​cosas​ ​y​ ​que​ ​sea​ ​lo​ ​más​ ​sencilla​ ​posible.

Garbage​ ​in-garbage​ ​out
La​ ​calidad​ ​del​ ​rendimiento​ ​de​ ​un​ ​sistema​ ​depende
de​ ​la​ ​calidad​ ​de​ ​la​ ​entrada​ ​de​ ​la​ ​información​ ​de
dicho​ ​sistema.

Limitar​ ​el​ ​tamaño​ ​de​ ​los​ ​campos​ ​de​ ​entrada​ ​a​ ​su
contenido​ ​o​ ​permitir​ ​solo​ ​la​ ​entrada​ ​de
determinados​ ​valores​ ​correctos​ ​ayuda​ ​al​ ​usuario​ ​a
no​ ​meter​ ​información​ ​basura.

17

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

El​ ​diagrama​ ​de​ ​Gutenberg
Diagrama​ ​que​ ​describe​ ​el​ ​patrón​ ​general​ ​seguido
por​ ​la​ ​vista​ ​cuando​ ​observamos​ ​una​ ​información
homogénea​ ​distribuida​ ​de​ ​manera​ ​regular.

Ubicar​ ​los​ ​botones​ ​en​ ​la​ ​esquina​ ​inferior​ ​derecha
de​ ​un​ ​formulario​ ​ayuda​ ​al​ ​usuario​ ​a​ ​comprender
que​ ​es​ ​el​ ​paso​ ​final​ ​a​ ​realizar​ ​para​ ​cerrar​ ​la
edición.

La​ ​ley​ ​de​ ​Hick
El​ ​tiempo​ ​que​ ​se​ ​tarda​ ​en​ ​tomar​ ​una​ ​decisión
aumenta​ ​a​ ​medida​ ​que​ ​se​ ​incrementa​ ​el​ ​número
de​ ​alternativas.

Reducir​ ​el​ ​número​ ​de​ ​opciones​ ​de​ ​los​ ​menús
ayuda​ ​a​ ​acelerar​ ​la​ ​toma​ ​de​ ​decisiones.

Jerarquía​ ​de​ ​necesidades
Para​ ​que​ ​un​ ​diseño​ ​tenga​ ​éxito,​ ​debe​ ​satisfacer​ ​las
necesidades​ ​básicas​ ​de​ ​las​ ​personas​ ​antes​ ​de
intentar​ ​satisfacer​ ​otras​ ​necesidades​ ​más
elevadas.

18

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Realce
Técnica​ ​eficaz​ ​para​ ​llamar​ ​la​ ​atención​ ​sobre​ ​los
elementos​ ​de​ ​un​ ​diseño

El​ ​tamaño​ ​de​ ​letra​ ​del​ ​título​ ​nos​ ​ayuda​ ​a
destacarlo​ ​sobre​ ​el​ ​resto​ ​de​ ​información.

Conviene​ ​no​ ​realzar​ ​más​ ​del​ ​10%​ ​del​ ​diseño
visible,​ ​los​ ​efectos​ ​se​ ​diluyen​ ​a​ ​medida​ ​que
aumenta​ ​el​ ​porcentaje.

Hórror​ ​vacui
Es​ ​una​ ​expresión​ ​latina​ ​que​ ​significa​ ​“temor​ ​al
vacío”​ ​y​ ​hace​ ​referencia​ ​al​ ​deseo​ ​de​ ​llenar​ ​los
espacios​ ​vacíos​ ​con​ ​información​ ​u​ ​objetos.​ ​A
medida​ ​que​ ​el​ ​hórror​ ​vacui​ ​aumenta​ ​el​ ​valor
percibido​ ​desciende.

El​ ​espacio​ ​en​ ​blanco​ ​de​ ​la​ ​cabecera​ ​de​ ​los​ ​menús
aumenta​ ​el​ ​valor​ ​percibido​ ​por​ ​el​ ​usuario​ ​de
nuestro​ ​producto.

Representación​ ​icónica
Uso​ ​de​ ​imágenes​ ​para​ ​facilitar​ ​la​ ​identificación​ ​y​ ​el
recuerdo​ ​de​ ​señales​ ​y​ ​controles.

El​ ​uso​ ​de​ ​iconografía​ ​de​ ​Material​ ​Design​ ​de​ ​Google
favorece​ ​que​ ​los​ ​usuarios​ ​identifiquen​ ​la
funcionalidad​ ​del​ ​icono​ ​al​ ​ser​ ​ampliamente
conocido​ ​por​ ​lo​ ​usuarios​ ​de​ ​dispositivos​ ​móviles​ ​o
las​ ​aplicaciones​ ​de​ ​escritorio​ ​de​ ​Google.

Legibilidad
Claridad​ ​visual​ ​de​ ​un​ ​texto,​ ​por​ ​lo​ ​general​ ​basada
en​ ​el​ ​tamaño,​ ​el​ ​tipo​ ​de​ ​letra,​ ​el​ ​contraste,​ ​los
bloques​ ​de​ ​texto​ ​y​ ​el​ ​espaciado​ ​de​ ​los​ ​caracteres
utilizados.

El​ ​nuevo​ ​estilo​ ​visual​ ​aplicado​ ​en​ ​las​ ​CSS​ ​de
Velneo​ ​ayuda​ ​a​ ​la​ ​legibilidad​ ​de​ ​la​ ​información.

19

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Modularidad
Método​ ​para​ ​controlar​ ​la​ ​complejidad​ ​de​ ​un
sistema,​ ​que​ ​consiste​ ​en​ ​dividir​ ​los​ ​grandes
sistemas​ ​en​ ​múltiples​ ​sistemas​ ​de​ ​menor​ ​tamaño.

El​ ​menú​ ​de​ ​gestión​ ​es​ ​una​ ​muestra​ ​de
modularidad.

La​ ​navaja​ ​de​ ​Ockham
Ante​ ​la​ ​posibilidad​ ​de​ ​elegir​ ​entre​ ​dos​ ​diseños
equivalentes​ ​desde​ ​el​ ​punto​ ​de​ ​vista​ ​funcional,
conviene​ ​decantarse​ ​por​ ​el​ ​más​ ​sencillo.

Los​ ​nuevos​ ​combobox​ ​sin​ ​iconos​ ​son​ ​visualmente
más​ ​sencillos​ ​de​ ​leer​ ​e​ ​interpretar.

Revelación​ ​progresiva
Estrategia​ ​para​ ​controlar​ ​la​ ​complejidad​ ​de​ ​la
información​ ​que​ ​consiste​ ​en​ ​mostrar​ ​únicamente
la​ ​información​ ​necesaria​ ​o​ ​requerida​ ​en​ ​un
momento​ ​dado.

Los​ ​menús​ ​sencillos​ ​con​ ​botón​ ​de​ ​búsqueda
avanzada​ ​facilitan​ ​el​ ​acceso​ ​a​ ​búsquedas​ ​más
complejas​ ​solo​ ​cuando​ ​es​ ​necesario​ ​para​ ​el
usuario.

20

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Proximidad
Los​ ​elementos​ ​cercanos​ ​entre​ ​sí​ ​se​ ​perciben​ ​como
más​ ​relacionados​ ​que​ ​los​ ​que​ ​están​ ​muy
separados.

En​ ​los​ ​formularios​ ​de​ ​documentos​ ​de​ ​compras​ ​y
ventas​ ​los​ ​elementos​ ​de​ ​cabecera​ ​se​ ​ven
claramente​ ​relacionados​ ​entre​ ​sí,​ ​al​ ​igual​ ​que
ocurre​ ​con​ ​los​ ​totales​ ​del​ ​pie,​ ​sin​ ​embargo​ ​en​ ​la
cabecera​ ​y​ ​los​ ​totales​ ​la​ ​distancia​ ​hace​ ​que​ ​no​ ​se
perciba​ ​relación.

Redundancia
Uso​ ​de​ ​más​ ​elementos​ ​de​ ​los​ ​necesarios​ ​a​ ​fin​ ​de
mantener​ ​el​ ​rendimiento​ ​de​ ​un​ ​sistema​ ​en​ ​caso​ ​de
fallo​ ​de​ ​uno​ ​o​ ​más​ ​elementos​ ​del​ ​mismo.

Aunque​ ​las​ ​existencias​ ​o​ ​los​ ​saldos​ ​se​ ​calculan
automáticamente,​ ​siempre​ ​es​ ​conveniente
disponer​ ​de​ ​opciones​ ​de​ ​recálculo​ ​manual​ ​ante​ ​un
posible​ ​fallo.

Proporción​ ​señal-ruido
La​ ​degradación​ ​de​ ​la​ ​señal​ ​tiene​ ​lugar​ ​cuando​ ​la
información​ ​se​ ​presenta​ ​de​ ​manera​ ​ineficaz:​ ​letra
poco​ ​clara,​ ​grafías​ ​inadecuadas​ ​o​ ​iconos​ ​y
etiquetas​ ​ambiguos.​ ​La​ ​claridad​ ​de​ ​la​ ​señal​ ​mejora
a​ ​través​ ​de​ ​la​ ​presentación​ ​sencilla​ ​y​ ​concisa​ ​de​ ​la
información.

La​ ​representación​ ​mediante​ ​una​ ​gráfica​ ​clara​ ​y
sencilla​ ​ayuda​ ​a​ ​interpretar​ ​la​ ​información​ ​de
forma​ ​rápida​ ​y​ ​concisa.

21

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Similitud
Los​ ​elementos​ ​similares​ ​se​ ​perciben​ ​como​ ​más
relacionados​ ​entre​ ​sí​ ​que​ ​los​ ​que​ ​no​ ​lo​ ​son.

El​ ​uso​ ​del​ ​mismo​ ​icono​ ​en​ ​los​ ​botones​ ​de​ ​menú
ayuda​ ​al​ ​usuario​ ​a​ ​entender​ ​que​ ​su
funcionamiento​ ​es​ ​similar​ ​aunque​ ​sean​ ​campos
diferentes.

Conexión​ ​de​ ​lo​ ​uniforme
Los​ ​elementos​ ​que​ ​comparten​ ​propiedades
visuales​ ​uniformes,​ ​como​ ​el​ ​color,​ ​se​ ​perciben​ ​más
relacionados​ ​entre​ ​sí​ ​que​ ​los​ ​que​ ​no​ ​guardan
ninguna​ ​conexión.

El​ ​uso​ ​de​ ​cajas​ ​de​ ​grupo​ ​con​ ​controles​ ​del​ ​mismo
tipo​ ​ayuda​ ​a​ ​entender​ ​que​ ​están​ ​conectados.

Visibilidad
El​ ​uso​ ​de​ ​un​ ​sistema​ ​mejora​ ​cuando​ ​su​ ​estado​ ​y
los​ ​métodos​ ​de​ ​empleo​ ​son​ ​claramente​ ​visibles.

El​ ​uso​ ​de​ ​información​ ​como​ ​la​ ​trazabilidad​ ​ayuda​ ​a
entender​ ​el​ ​funcionamiento​ ​del​ ​ciclo​ ​de​ ​compras​ ​o
ventas.

22

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Soluciones
El​ ​nombre​ ​que​ ​damos​ ​a​ ​las​ ​soluciones​ ​es​ ​utilizado​ ​para​ ​crear​ ​la​ ​carpeta​ ​en​ ​disco​ ​que​ ​contendrá​ ​los
proyectos.​ ​En​ ​principio​ ​los​ ​sistemas​ ​operativos​ ​actuales​ ​no​ ​deberían​ ​presentar​ ​ningún​ ​problema​ ​en​ ​el​ ​uso
de​ ​caracteres​ ​acentuados,​ ​sin​ ​embargo​ ​es​ ​recomendable​ ​no​ ​usar​ ​caracteres​ ​especiales​ ​que​ ​no​ ​puedan​ ​ser
utilizados​ ​en​ ​el​ ​nombre​ ​asignado​ ​a​ ​la​ ​carpeta.

Recomendaciones​ ​sobre​ ​el​ ​nombre​ ​de​ ​los​ ​proyectos
El​ ​nombre​ ​de​ ​ser​ ​único,​ ​descriptivo​ ​y​ ​lo​ ​más​ ​corto​ ​posible.​ ​Veamos​ ​algunos​ ​ejemplos.

No​ ​recomendable Motivo

Gestión​ ​Integrada Demasiado​ ​genérico

Gestión​ ​Integrada​ ​#1 Usa​ ​caracteres​ ​especiales

Gestión​ ​Integrada​ ​para​ ​Industrias​ ​Derivadas​ ​del
Proceso​ ​Lácteo

Demasiado​ ​largo

GIIDPL Difícil​ ​de​ ​recordar.​ ​No​ ​recomendable​ ​salvo​ ​que​ ​se
el​ ​nombre​ ​de​ ​un​ ​producto​ ​estándar​ ​cuyas​ ​siglas​ ​se
usan​ ​de​ ​forma​ ​constante.

Recomendable Motivo

Gestión​ ​Integrada​ ​Ejemplosa Corto​ ​y​ ​personalizado​ ​para​ ​mi​ ​empresa,​ ​lo​ ​que​ ​lo
convierte​ ​en​ ​algo​ ​único

Ejemplosa​ ​GESINT Corto​ ​y​ ​aplicando​ ​un​ ​nombre​ ​de​ ​producto​ ​o
módulo

eGESINT Nombre​ ​comercial​ ​de​ ​un​ ​producto

23

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Proyectos
Los​ ​contenedores​ ​de​ ​objetos​ ​son​ ​la​ ​pieza​ ​clave​ ​en​ ​el​ ​diseño​ ​de​ ​la​ ​arquitectura​ ​de​ ​nuestras​ ​aplicaciones.
Por​ ​este​ ​motivo​ ​es​ ​bueno​ ​tener​ ​presentes​ ​algunas​ ​recomendaciones​ ​a​ ​la​ ​hora​ ​de​ ​crear​ ​aplicaciones​ ​con
mayor​ ​o​ ​menor​ ​complejidad.

Recomendaciones​ ​generales​ ​para​ ​proyectos​ ​de​ ​aplicación​ ​y​ ​datos

Recomendaciones​ ​generales​ ​para​ ​proyectos​ ​de​ ​aplicación​ ​y​ ​datos

La​ ​​longitud​ ​del​ ​nombre​​ ​o​ ​descripción​ ​de​ ​un​ ​proyecto​ ​no​ ​es​ ​un​ ​problema​ ​en​ ​sí,​ ​sin​ ​embargo​ ​la​ ​longitud
del​ ​nombre​ ​nos​ ​afectará​ ​a​ ​la​ ​hora​ ​de​ ​poder​ ​ver​ ​los​ ​identificadores​ ​“completos”​ ​de​ ​los​ ​objetos.​ ​Por​ ​este
motivo,​ ​debemos​ ​usar​ ​el​ ​criterio​ ​menos​ ​es​ ​más.​ ​En​ ​la​ ​siguiente​ ​imagen​ ​podemos​ ​observar​ ​que​ ​el
identificador​ ​del​ ​objeto​ ​se​ ​puede​ ​leer​ ​entero.

24

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Sin​ ​embargo,​ ​si​ ​el​ ​nombre​ ​del​ ​proyecto​ ​fuese​ ​“Gestión​ ​Integrada​ ​de​ ​Automoción”​ ​ya​ ​no​ ​entraría​ ​en​ ​este
espacio.​ ​El​ ​resultado​ ​es​ ​que​ ​tendríamos​ ​que​ ​hacer​ ​muy​ ​ancho​ ​el​ ​dock​ ​donde​ ​se​ ​muestran​ ​las
propiedades​ ​de​ ​un​ ​objeto.​ ​Por​ ​este​ ​motivo,​ ​es​ ​recomendable​ ​usar​ ​o​ ​nombres​ ​cortos,​ ​siglas​ ​o
abreviaturas​ ​que​ ​permitan​ ​reducir​ ​el​ ​tamaño​ ​del​ ​nombre​ ​del​ ​proyecto.

El​ ​que​ ​existan​ ​varios​ ​proyectos​ ​con​ ​el​ ​mismo​ ​nombre,​ ​no​ ​supone​ ​un​ ​problema​ ​funcional​ ​debido​ ​a​ ​que​ ​a
nivel​ ​interno​ ​se​ ​utiliza​ ​el​ ​“id​ ​del​ ​fichero”​ ​y​ ​no​ ​su​ ​nombre.​ ​Sin​ ​embargo,​ ​no​ ​es​ ​conveniente​ ​tener​ ​nombres
duplicados​ ​ya​ ​que​ ​cuando​ ​los​ ​veamos​ ​juntos​ ​en​ ​un​ ​mismo​ ​esquema​ ​no​ ​podremos​ ​diferenciarlos​ ​de
forma​ ​directa.

En​ ​el​ ​nombre​ ​de​ ​los​ ​proyectos​ ​se​ ​pueden​ ​dejar​ ​espacios​ ​en​ ​blanco​ ​entre​ ​las​ ​diferentes​ ​palabras,​ ​es
conveniente​ ​que​ ​el​ ​equipo​ ​establezca​ ​el​ ​criterio​ ​de​ ​utilizar​ ​o​ ​no​ ​espacios​ ​en​ ​blanco​ ​para​ ​conseguir​ ​que
todos​ ​los​ ​proyectos​ ​se​ ​creen​ ​con​ ​el​ ​mismo​ ​criterio.

Es​ ​conveniente​ ​añadir​ ​un​ ​​sufijo​​ ​al​ ​nombre​ ​del​ ​proyecto​ ​indicando​ ​si​ ​se​ ​trata​ ​de​ ​aplicación​ ​o​ ​datos,​ ​en
esta​ ​guía​ ​utilizamos​ ​los​ ​sufijos​ ​“app”​ ​y​ ​“dat”​ ​respectivamente.​ ​Sin​ ​embargo,​ ​se​ ​puede​ ​utilizar​ ​prefijos
más​ ​cortos​ ​como​ ​“a”​ ​y​ ​“d”.

25

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

El​ ​motivo​ ​por​ ​el​ ​que​ ​conviene​ ​utilizar​ ​estos​ ​sufijos​ ​está​ ​relacionado​ ​con​ ​la​ ​posibilidad​ ​de​ ​crear​ ​el​ ​mismo
objeto​ ​en​ ​cualquier​ ​tipo​ ​de​ ​proyecto,​ ​por​ ​ejemplo​ ​podemos​ ​crear​ ​un​ ​proceso​ ​en​ ​el​ ​proyecto​ ​de​ ​aplicación
o​ ​datos,​ ​si​ ​llamamos​ ​igual​ ​a​ ​ambos​ ​proyectos​ ​no​ ​podríamos​ ​saber​ ​cuando​ ​vemos​ ​el​ ​identificador​ ​del
objeto​ ​donde​ ​podremos​ ​encontrarlo.

El​ ​​alias​​ ​es​ ​un​ ​datos​ ​“obligatorio”​ ​que​ ​no​ ​debemos​ ​olvidarnos​ ​de​ ​cubrir,​ ​ya​ ​que​ ​se​ ​utilizará​ ​en​ ​diferentes
ámbitos​ ​de​ ​la​ ​aplicación,​ ​sobre​ ​todo​ ​al​ ​crear​ ​scripts​ ​de​ ​JavaScript​ ​en​ ​el​ ​que​ ​los​ ​identificadores​ ​de​ ​los
objetos​ ​se​ ​componen​ ​utilizando​ ​el​ ​alias​ ​del​ ​proyecto​ ​que​ ​lo​ ​contiene​ ​y​ ​el​ ​identificador​ ​del​ ​propio​ ​objeto.
Por​ ​este​ ​motivo​ ​la​ ​recomendación​ ​es​ ​añadir​ ​el​ ​alias​ ​al​ ​proyecto​ ​en​ ​el​ ​mismo​ ​momento​ ​de​ ​su​ ​creación.

Recomendaciones​ ​sobre​ ​el​ ​nombre​ ​de​ ​los​ ​proyectos

No​ ​recomendable Motivo

Gestión​ ​Integrada No​ ​identifica​ ​si​ ​es​ ​de​ ​datos​ ​o​ ​aplicación

Gestión​ ​Integrada​ ​#1​ ​app Usa​ ​caracteres​ ​especiales

Gestión​ ​Integrada​ ​para​ ​Industrias​ ​Derivadas​ ​del
Proceso​ ​Lácteo​ ​app

Demasiado​ ​largo

Recomendable Motivo

26

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Ejemplosa_GESINT_app Corto,​ ​único,​ ​con​ ​sufijo​ ​de​ ​tipo​ ​y​ ​sin​ ​espacios

eGESINT​ ​dat Corto,​ ​único,​ ​con​ ​sufijo​ ​de​ ​tipo​ ​y​ ​con​ ​espacios

vERP_2_app Corto,​ ​único,​ ​con​ ​sufijo​ ​de​ ​tipo​ ​y​ ​sin​ ​espacios

Diseño​ ​de​ ​la​ ​arquitectura​ ​de​ ​las​ ​aplicaciones

¿Es​ ​mejor​ ​tener​ ​un​ ​proyecto​ ​de​ ​datos​ ​o​ ​dividir​ ​las​ ​tablas​ ​en​ ​múltiples​ ​proyectos?
Aquí​ ​encaja​ ​perfectamente​ ​el​ ​principio​ ​de​ ​menos​ ​es​ ​más.​ ​Si​ ​podemos​ ​tener​ ​un​ ​único​ ​proyecto​ ​de​ ​datos
será​ ​más​ ​fácil​ ​de​ ​programar,​ ​mantener​ ​y​ ​evolucionar.

¿Cómo​ ​organizo​ ​mis​ ​tablas​ ​de​ ​diferentes​ ​módulos​ ​en​ ​un​ ​único​ ​proyecto​ ​de​ ​datos?
Aplicando​ ​una​ ​organización​ ​de​ ​encarpetado​ ​por​ ​módulo.

Dentro​ ​de​ ​cada​ ​módulo​ ​podremos​ ​crear​ ​subcarpetas​ ​con​ ​las​ ​tablas​ ​del​ ​mismo.​ ​Con​ ​esta​ ​organización​ ​si
mañana​ ​queremos​ ​mover​ ​todas​ ​las​ ​tablas​ ​de​ ​un​ ​módulo​ ​a​ ​otro​ ​proyecto​ ​podremos​ ​hacerlo​ ​con​ ​un​ ​cortar​ ​y
pegar.

¿Cuándo​ ​tiene​ ​sentido​ ​crear​ ​más​ ​de​ ​un​ ​proyecto​ ​de​ ​datos?
Hay​ ​varios​ ​motivos​ ​por​ ​los​ ​que​ ​es​ ​necesario​ ​crear​ ​más​ ​de​ ​un​ ​proyecto​ ​de​ ​datos:

1. Cuando​ ​tenemos​ ​un​ ​núcleo​ ​estándar​ ​para​ ​todas​ ​nuestras​ ​aplicaciones​ ​que​ ​no​ ​queremos​ ​tocar​ ​ni
engordar​ ​con​ ​funcionalidades​ ​específicas​ ​de​ ​cada​ ​cliente​ ​o​ ​sector,​ ​y​ ​sobre​ ​ese​ ​núcleo
desarrollamos​ ​una​ ​solución​ ​personalizada​ ​para​ ​un​ ​cliente​ ​o​ ​sector.​ ​En​ ​este​ ​caso​ ​se​ ​suele​ ​crear​ ​un
proyecto​ ​de​ ​datos​ ​con​ ​las​ ​tablas​ ​específicas​ ​para​ ​ese​ ​cliente​ ​o​ ​sector​ ​que​ ​hereda​ ​del​ ​proyecto​ ​de
datos​ ​del​ ​núcleo.​ ​Esto​ ​nos​ ​obligará​ ​a​ ​tener​ ​una​ ​instancia​ ​de​ ​datos​ ​para​ ​cada​ ​proyecto.

2. Cuando​ ​un​ ​proyecto​ ​va​ ​a​ ​contener​ ​tablas​ ​comunes​ ​a​ ​múltiples​ ​empresas,​ ​en​ ​este​ ​caso​ ​se​ ​crea​ ​una

única​ ​instancia​ ​de​ ​datos​ ​para​ ​esas​ ​tablas​ ​comunes​ ​y​ ​para​ ​los​ ​datos​ ​específicos​ ​de​ ​cada​ ​empresa
se​ ​crea​ ​un​ ​proyecto​ ​que​ ​heredado​ ​del​ ​de​ ​tablas​ ​comunes​ ​y​ ​que​ ​se​ ​instanciará​ ​una​ ​vez​ ​por​ ​cada
empresa.​ ​Para​ ​poder​ ​crear​ ​esta​ ​estructura​ ​de​ ​instancias​ ​necesitaremos​ ​dos​ ​o​ ​más​ ​proyectos​ ​de
datos.

27

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

28

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Organización​ ​de​ ​carpetas

No​ ​repitas​ ​la​ ​organización​ ​del​ ​inspector​ ​por​ ​tipo​ ​de​ ​objeto
Para​ ​eso​ ​ya​ ​tenemos​ ​el​ ​inspector​ ​de​ ​objetos​ ​por​ ​tipo,​ ​en​ ​su​ ​lugar​ ​debemos​ ​buscar​ ​una​ ​organización
basada​ ​en​ ​la​ ​funcionalidad,​ ​por​ ​ejemplo​ ​por​ ​módulos.​ ​De​ ​esta​ ​forma​ ​facilitamos​ ​que​ ​si​ ​queremos​ ​copiar​ ​un
módulo​ ​completo​ ​a​ ​otro​ ​proyecto​ ​podamos​ ​hacerlo​ ​de​ ​forma​ ​rápida​ ​y​ ​sencilla​ ​con​ ​un​ ​solo​ ​copiar/pegar.

Mantén​ ​la​ ​misma​ ​estructura​ ​en​ ​los​ ​proyectos​ ​de​ ​datos​ ​y​ ​aplicación
Cuanto​ ​más​ ​homogénea​ ​sea​ ​la​ ​organización​ ​de​ ​los​ ​objetos​ ​más​ ​fácil​ ​nos​ ​resultará​ ​encontrar​ ​objetos.​ ​Si
aplicamos​ ​el​ ​mismo​ ​criterio​ ​organizativo​ ​en​ ​los​ ​proyectos​ ​de​ ​aplicación​ ​y​ ​datos​ ​conseguiremos​ ​facilitar
aún​ ​más​ ​la​ ​localización​ ​de​ ​objetos​ ​y​ ​la​ ​posibilidad​ ​de​ ​moverlos​ ​o​ ​copiarlos​ ​a​ ​otros​ ​proyectos.

Crea​ ​una​ ​carpeta​ ​para​ ​módulo​ ​o​ ​grupo​ ​funcional​ ​de​ ​objetos
Las​ ​carpetas​ ​son​ ​contenedores​ ​de​ ​objetos,​ ​pero​ ​también​ ​de​ ​subcarpetas,​ ​por​ ​este​ ​motivo​ ​es​ ​conveniente
una​ ​buena​ ​organización​ ​basada​ ​en​ ​módulos​ ​o​ ​grupos​ ​funcionales​ ​con​ ​la​ ​que​ ​podemos​ ​navegar​ ​a​ ​través​ ​de
sus​ ​subcarpetas​ ​de​ ​forma​ ​rápida​ ​e​ ​intuitiva.

29

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

¿Cómo​ ​organizar​ ​los​ ​objetos​ ​del​ ​proyecto​ ​de​ ​datos​ ​dentro​ ​del​ ​módulo?
En​ ​el​ ​proyecto​ ​datos,​ ​dentro​ ​de​ ​cada​ ​módulo​ ​en​ ​el​ ​caso​ ​de​ ​que​ ​hubiese​ ​un​ ​gran​ ​números​ ​de​ ​objetos​ ​de​ ​un
determinado​ ​podríamos​ ​hacer​ ​subcarpetas​ ​por​ ​submódulo.​ ​Si​ ​el​ ​número​ ​no​ ​es​ ​demasiado​ ​elevado
podemos​ ​directamente​ ​crear​ ​subcarpetas​ ​por​ ​tipo​ ​de​ ​objeto.

Si​ ​hemos​ ​creado​ ​esquemas,​ ​muy​ ​recomendable,​ ​crearemos​ ​una​ ​subcarpeta​ ​(icono​ ​Objetos​ ​4)​ ​conteniendo
todos​ ​los​ ​esquemas​ ​ordenados​ ​por​ ​orden​ ​alfabético​ ​del​ ​identificador.

30

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Las​ ​tablas​ ​se​ ​organizan​ ​en​ ​una​ ​subcarpeta​ ​(icono​ ​Objetos​ ​1)​ ​por​ ​orden​ ​alfabético.​ ​Si​ ​hay​ ​muchas​ ​tablas​ ​se
pueden​ ​crear​ ​subcarpetas​ ​por​ ​submódulo​ ​y​ ​dentro​ ​de​ ​cada​ ​una​ ​de​ ​ellas​ ​las​ ​tablas​ ​también​ ​por​ ​orden
alfabético.

31

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Las​ ​tablas​ ​estáticas​ ​se​ ​organizan​ ​en​ ​una​ ​subcarpeta​ ​(icono​ ​Objetos​ ​9).​ ​Si​ ​hay​ ​muchas​ ​se​ ​aplica​ ​el​ ​criterio
de​ ​subcarpeta​ ​por​ ​submódulo.

Los​ ​índices​ ​complejos​ ​se​ ​organizan​ ​en​ ​una​ ​subcarpeta​ ​(icono​ ​Objetos​ ​5).​ ​Si​ ​hay​ ​muchas​ ​se​ ​aplica​ ​el
criterio​ ​de​ ​subcarpeta​ ​por​ ​submódulo.

32

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Las​ ​variables​ ​globales​ ​se​ ​organizan​ ​en​ ​una​ ​subcarpeta​ ​(icono​ ​Objetos​ ​3).​ ​Si​ ​hay​ ​muchas​ ​se​ ​aplica​ ​el
criterio​ ​de​ ​subcarpeta​ ​por​ ​submódulo.

Los​ ​objetos​ ​de​ ​ejecución​ ​como​ ​procesos,​ ​funciones,​ ​búsquedas,​ ​tubos,​ ​etc.​ ​se​ ​organizan​ ​en​ ​una
subcarpeta​ ​(icono​ ​General).​ ​Si​ ​hay​ ​muchos​ ​se​ ​aplica​ ​el​ ​criterio​ ​de​ ​subcarpeta​ ​por​ ​submódulo.

33

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Los​ ​maestros​ ​generales​ ​que​ ​se​ ​usan​ ​en​ ​varios​ ​módulos​ ​se​ ​organizan​ ​en​ ​una​ ​carpeta​ ​llamada​ ​Maestros
(icono​ ​Objetos​ ​3).​ ​La​ ​organización​ ​interna​ ​de​ ​subcarpetas​ ​idéntica​ ​a​ ​la​ ​comentada​ ​para​ ​los​ ​módulos.

Para​ ​el​ ​resto​ ​de​ ​objetos​ ​que​ ​se​ ​usan​ ​de​ ​forma​ ​genérica​ ​utilizaremos​ ​la​ ​carpeta​ ​Recursos​ ​(icono​ ​Recursos)
que​ ​contendrá​ ​subcarpeta​ ​para​ ​los​ ​diferentes​ ​recursos,​ ​por​ ​ejemplo​ ​constantes​ ​(icono​ ​Objetos​ ​8)​ ​que​ ​a​ ​su
vez​ ​contiene​ ​subcarpetas​ ​por​ ​el​ ​uso​ ​de​ ​las​ ​constantes​ ​(mensajes​ ​de​ ​error,​ ​mensajes​ ​genéricos,​ ​nombre,
preguntas,​ ​valores,​ ​etc.).​ ​También​ ​es​ ​normal​ ​crear​ ​subcarpetas​ ​para​ ​procesos​ ​o​ ​funciones​ ​de​ ​uso​ ​general
en​ ​la​ ​aplicación.

34

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

¿Cómo​ ​organizar​ ​los​ ​objetos​ ​del​ ​proyecto​ ​de​ ​datos​ ​dentro​ ​del​ ​módulo?
La​ ​organización​ ​de​ ​carpetas​ ​del​ ​módulo​ ​de​ ​aplicación​ ​es​ ​similar​ ​en​ ​la​ ​parte​ ​de​ ​módulos,​ ​a​ ​partir​ ​de​ ​ahí​ ​las
subcarpetas​ ​siguen​ ​un​ ​criterio​ ​orientado​ ​a​ ​organizar​ ​los​ ​objetos​ ​teniendo​ ​presente​ ​que​ ​se​ ​usan​ ​para​ ​la
interfaz​ ​de​ ​la​ ​aplicación.

En​ ​caso​ ​de​ ​que​ ​el​ ​proyecto​ ​contenga​ ​el​ ​objeto​ ​AUTOEXEC​ ​es​ ​recomendable​ ​poner​ ​la​ ​carpeta​ ​de​ ​Marco
(icono​ ​Marco)​ ​la​ ​primera.

Esta​ ​carpeta​ ​contendrá​ ​diferentes​ ​subcarpetas​ ​organizadas​ ​por​ ​orden​ ​alfabético​ ​para​ ​contener​ ​objetos
relaciones​ ​con​ ​los​ ​proceso​ ​arranque,​ ​barra​ ​de​ ​menú,​ ​docks,​ ​formulario​ ​principal​ ​y​ ​menú​ ​general.​ ​En
definitiva​ ​objetos​ ​relaciones​ ​con​ ​el​ ​marco​ ​general​ ​de​ ​la​ ​aplicación.

Cada​ ​de​ ​uno​ ​de​ ​los​ ​módulos​ ​dispondrá​ ​de​ ​una​ ​carpeta​ ​general​ ​y​ ​en​ ​su​ ​interior​ ​pueden​ ​darse​ ​2​ ​casos:​ ​Crear
subcarpetas​ ​con​ ​submódulos​ ​o​ ​crear​ ​subcarpetas​ ​por​ ​tabla.​ ​Este​ ​segundo​ ​caso​ ​se​ ​da​ ​con​ ​las​ ​tablas​ ​de
configuración​ ​(icono​ ​Objetos​ ​5)

35

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

​ ​y​ ​con​ ​las​ ​tablas​ ​maestras​ ​(icono​ ​Objetos​ ​3)​ ​comunes​ ​para​ ​todos​ ​los​ ​módulos.

En​ ​las​ ​carpetas​ ​de​ ​módulos​ ​(icono​ ​Objetos​ ​1)​ ​suelen​ ​crearse​ ​unas​ ​subcarpetas​ ​para​ ​organizar​ ​mejor
funcionalmente​ ​las​ ​tablas.

36

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Dentro​ ​de​ ​cada​ ​subcarpeta​ ​suelen​ ​estar​ ​las​ ​subcarpetas​ ​(icono​ ​Objetos​ ​1)​ ​relativas​ ​a​ ​las​ ​diferentes​ ​tablas
organizadas​ ​por​ ​orden​ ​alfabético.

Dentro​ ​de​ ​cada​ ​carpeta​ ​de​ ​tabla​ ​se​ ​aplica​ ​el​ ​criterio​ ​de​ ​organización​ ​que​ ​denominados​ ​“semáforo”​ ​por​ ​la
coincidencia​ ​en​ ​los​ ​colores​ ​y​ ​orden​ ​con​ ​el​ ​objeto​ ​físico.

37

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

También​ ​podemos​ ​apreciar​ ​como​ ​dentro​ ​de​ ​una​ ​tabla​ ​se​ ​pueden​ ​organizar​ ​subcarpetas​ ​de​ ​tablas
relacionadas​ ​(icono​ ​Objetos​ ​1)​ ​como​ ​en​ ​el​ ​caso​ ​de​ ​las​ ​líneas​ ​de​ ​detalle​ ​de​ ​pedidos​ ​y​ ​presupuestos​ ​que
están​ ​organizadas​ ​dentro​ ​de​ ​la​ ​carpeta​ ​de​ ​sus​ ​cabecera​ ​de​ ​documento​ ​correspondientes.

Usa​ ​la​ ​técnica​ ​del​ ​semáforo​ ​para​ ​organizar​ ​los​ ​objetos​ ​de​ ​interfaz​ ​de​ ​una​ ​tabla
Por​ ​cada​ ​tabla​ ​es​ ​habitual​ ​tener​ ​que​ ​crear​ ​las​ ​3​ ​carpetas​ ​que​ ​describiremos​ ​a​ ​continuación,​ ​aunque​ ​en
algunos​ ​casos​ ​puede​ ​ocurrir​ ​que​ ​solo​ ​tengamos​ ​que​ ​crear​ ​una​ ​o​ ​dos​ ​de​ ​ellas.​ ​Dentro​ ​los​ ​objetos​ ​se
agrupan​ ​por​ ​tipo​ ​y​ ​dentro​ ​de​ ​cada​ ​tipo​ ​por​ ​orden​ ​alfabético​ ​del​ ​identificador​ ​salvo​ ​en​ ​algunas​ ​excepciones
que​ ​se​ ​especifican.

En​ ​la​ ​carpeta​ ​roja​ ​o​ ​de​ ​interfaz​ ​(icono​ ​Interfaz)​ ​incluiremos​ ​todos​ ​los​ ​objetos​ ​que​ ​tiene​ ​que​ ​ver​ ​con​ ​la
interfaz​ ​organizados​ ​de​ ​la​ ​siguiente​ ​forma:

● Menú.
● Formularios​ ​principales​ ​de​ ​edición.​ ​El​ ​formulario​ ​de​ ​edición​ ​irá​ ​en​ ​segundo​ ​lugar.​ ​En​ ​muchos

casos​ ​se​ ​utiliza​ ​un​ ​único​ ​formulario​ ​para​ ​alta​ ​baja​ ​y​ ​modificación.​ ​En​ ​caso​ ​de​ ​tener​ ​formulario
independientes​ ​podremos​ ​ubicarlos​ ​juntos​ ​por​ ​orden​ ​alfabético.

● Subformularios.​ ​Detrás​ ​de​ ​cada​ ​formulario​ ​se​ ​ubicarán​ ​los​ ​subformularios​ ​en​ ​el​ ​mismo​ ​orden​ ​en
que​ ​están​ ​incluidos​ ​en​ ​el​ ​objeto​ ​separador​ ​de​ ​formularios,​ ​facilitando​ ​así​ ​su​ ​localización​ ​y​ ​edición.

● Formularios​ ​específicos.
● Formularios​ ​QML.
● Alternadores​ ​de​ ​lista.
● Multivistas.
● Rejillas.
● Rejillas​ ​avanzadas.
● Árboles​ ​visor​ ​de​ ​tablas.
● Casilleros.
● ComboViews.
● ListViews.
● ViewFlows.
● Listas​ ​QML.
● Gráficos.
● Informes.
● Esquemas​ ​con​ ​objetos​ ​visuales​ ​asociados.

38

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

En​ ​caso​ ​de​ ​que​ ​existiesen​ ​muchos​ ​objetos​ ​de​ ​un​ ​determinado​ ​tipo​ ​podemos​ ​crear​ ​subcarpetas​ ​para
organizarlas​ ​mejor,​ ​normalmente​ ​estas​ ​subcarpetas​ ​tendrán​ ​un​ ​nombre​ ​específico​ ​ya​ ​que​ ​los​ ​objetos
estarán​ ​relacionados​ ​con​ ​alguna​ ​funcionalidad.​ ​En​ ​la​ ​imagen​ ​vemos​ ​un​ ​ejemplo​ ​de​ ​como​ ​se​ ​han​ ​agrupado
en​ ​una​ ​subcarpeta​ ​todos​ ​los​ ​subformularios​ ​de​ ​configuración.

39

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

En​ ​la​ ​carpeta​ ​amarilla​ ​(icono​ ​General)​ ​incluiremos​ ​los​ ​objetos​ ​de​ ​ejecución​ ​que​ ​no​ ​tienen​ ​interfaz,​ ​se
ubicarán​ ​por​ ​orden​ ​alfabético​ ​dentro​ ​de​ ​cada​ ​tipo.​ ​El​ ​orden​ ​de​ ​organización​ ​será​ ​el​ ​siguiente:

● Búsquedas.
● Localizadores.
● Lupas.
● Cestas.
● Procesos.
● Funciones.
● Tubos​ ​de​ ​ficha.
● Tubos​ ​de​ ​lista.
● Colas.
● Impresoras​ ​lógicas.
● Protocolos​ ​TCP/IP.
● Dispositivos​ ​serie.
● Librerías​ ​externas.
● Ficheros​ ​adjuntos.

40

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

En​ ​la​ ​carpeta​ ​verde​ ​(icono​ ​Acciones​ ​y​ ​Menús)​ ​incluiremos​ ​las​ ​acciones,​ ​menús​ ​y​ ​barras​ ​de​ ​herramientas
asociadas​ ​a​ ​la​ ​tabla.​ ​El​ ​orden​ ​de​ ​objetos​ ​es​ ​el​ ​siguiente:

● Acción​ ​para​ ​ejecutar​ ​el​ ​menú.
● Subcarpeta​ ​general​ ​para​ ​todos​ ​los​ ​menús​ ​de​ ​botón.

○ Subcarpeta​ ​por​ ​cada​ ​menú​ ​de​ ​botón.
■ Menú.
■ Acciones​ ​incluidas​ ​en​ ​el​ ​menú.

● Subcarpeta​ ​con​ ​las​ ​toolbars
○ Toolbar.
○ Menú.
○ Acciones​ ​usadas​ ​en​ ​la​ ​toolbar​ ​o​ ​los​ ​menús.
○ Acciones​ ​para​ ​puntos​ ​de​ ​inserción.

Puntos​ ​de​ ​inserción​ ​en​ ​todas​ ​las​ ​toolbars​ ​y​ ​menús
Si​ ​estamos​ ​desarrollando​ ​un​ ​módulo​ ​que​ ​sirva​ ​de​ ​núcleo​ ​para​ ​nuestros​ ​desarrollos​ ​o​ ​un​ ​aplicación
estándar​ ​que​ ​puede​ ​ser​ ​heredada​ ​por​ ​otras​ ​personalizaciones​ ​para​ ​sectores​ ​o​ ​clientes​ ​es​ ​importante
añadir​ ​en​ ​todas​ ​las​ ​toolbars​ ​y​ ​menús​ ​un​ ​punto​ ​de​ ​inserción​ ​sin​ ​origen​ ​y​ ​en​ ​caso​ ​de​ ​que​ ​sea​ ​para​ ​una​ ​tabla
añadir​ ​un​ ​segundo​ ​punto​ ​de​ ​inserción​ ​con​ ​el​ ​origen​ ​de​ ​la​ ​tabla.

41

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Identificadores
Los​ ​identificadores​ ​son​ ​una​ ​pieza​ ​clave​ ​en​ ​el​ ​desarrollo​ ​de​ ​aplicaciones​ ​Velneo.​ ​Es​ ​el​ ​elemento​ ​que​ ​más
vamos​ ​a​ ​utilizar​ ​en​ ​nuestros​ ​desarrollos​ ​para​ ​hacer​ ​referencia​ ​a​ ​cada​ ​objeto,​ ​subobjeto​ ​o​ ​control.

Identificadores​ ​cortos​ ​y​ ​descriptivos
El​ ​tamaño​ ​del​ ​identificador​ ​es​ ​muy​ ​importante​ ​no​ ​solo​ ​por​ ​su​ ​legibilidad​ ​sino​ ​porque​ ​es​ ​el​ ​código​ ​o
referencia​ ​que​ ​se​ ​utilizará​ ​en​ ​el​ ​resto​ ​de​ ​puntos​ ​de​ ​la​ ​aplicación​ ​para​ ​ejecutar​ ​el​ ​objeto,​ ​subobjeto​ ​o​ ​hacer
referencia​ ​a​ ​un​ ​control.​ ​Por​ ​lo​ ​tanto​ ​aquí​ ​el​ ​tamaño​ ​sí​ ​importa​ ​ya​ ​que​ ​si​ ​utilizamos​ ​identificadores​ ​muy
largos​ ​el​ ​tamaño​ ​de​ ​nuestros​ ​proyectos​ ​pueden​ ​incrementarse​ ​notablemente.

¿Por​ ​qué​ ​usar​ ​abreviaturas?
Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​un​ ​simple​ ​campo​ ​puede​ ​ser​ ​usado​ ​cientos​ ​de​ ​veces.​ ​Si​ ​su​ ​identificador​ ​tiene
un​ ​tamaño​ ​de​ ​50​ ​caracteres​ ​estamos​ ​hablando​ ​de​ ​una​ ​ocupación​ ​de​ ​varios​ ​miles​ ​de​ ​bytes.​ ​Para​ ​reducir​ ​el
tamaño​ ​de​ ​los​ ​identificadores​ ​podemos​ ​usar​ ​abreviaturas​ ​que​ ​nos​ ​aportarán​ ​2​ ​grandes​ ​beneficios:

1. Reducción​ ​del​ ​tamaño​ ​que​ ​nos​ ​beneficiará​ ​en​ ​el​ ​tamaño​ ​de​ ​los​ ​proyectos.
2. En​ ​el​ ​árbol​ ​de​ ​propiedades​ ​poder​ ​ver​ ​completo​ ​el​ ​identificador​ ​del​ ​objeto​ ​usado.

¿Por​ ​qué​ ​conviene​ ​usar​ ​un​ ​diccionario​ ​de​ ​abreviaturas?
Evidentemente,​ ​las​ ​abreviaturas​ ​también​ ​tienen​ ​una​ ​desventaja​ ​y​ ​es​ ​que​ ​debemos​ ​de​ ​interpretar​ ​la
abreviatura​ ​para​ ​conocer​ ​la​ ​palabra​ ​a​ ​la​ ​que​ ​sustituye.​ ​Para​ ​facilitar​ ​esta​ ​labor​ ​es​ ​conveniente​ ​utilizar​ ​un
diccionario​ ​de​ ​abreviaturas.

Además,​ ​el​ ​diccionario​ ​nos​ ​aporta​ ​otra​ ​gran​ ​ventaja,​ ​como​ ​es​ ​el​ ​conseguir​ ​que​ ​todos​ ​los​ ​programadores
escribamos​ ​igual​ ​los​ ​identificadores.​ ​Precisamente,​ ​cuando​ ​no​ ​se​ ​usa​ ​un​ ​diccionario​ ​de​ ​términos​ ​o
abreviaturas​ ​es​ ​habitual​ ​que​ ​cada​ ​programador​ ​escriba​ ​la​ ​misma​ ​palabra​ ​de​ ​una​ ​forma​ ​distinta,​ ​por
ejemplo:​ ​​FACTURAS​,​ ​​FACTURA​,​ ​​FACT​,​ ​​FRA​,​ ​etc.

En​ ​definitiva,​ ​un​ ​equipo​ ​de​ ​desarrollo​ ​debe​ ​contar​ ​con​ ​un​ ​diccionario​ ​de​ ​abreviaturas​ ​que​ ​puede​ ​estar
almacenado​ ​en​ ​una​ ​aplicación,​ ​una​ ​hoja​ ​de​ ​cálculo​ ​o​ ​un​ ​documento​ ​de​ ​texto,​ ​es​ ​muy​ ​importante​ ​que
cuente​ ​con​ ​un​ ​sistema​ ​de​ ​búsqueda​ ​ágil.​ ​Lo​ ​fundamental​ ​para​ ​el​ ​equipo​ ​es​ ​que​ ​exista,​ ​que​ ​se​ ​utilice​ ​y​ ​que
se​ ​mantenga​ ​actualizado.​ ​Es​ ​recomendable​ ​que​ ​al​ ​lado​ ​de​ ​la​ ​abreviatura​ ​se​ ​indique​ ​todos​ ​los​ ​términos​ ​que
la​ ​utilizarán.

En​ ​el​ ​diccionario​ ​se​ ​puede​ ​aplicar​ ​por​ ​convenio​ ​el​ ​uso​ ​de​ ​palabras​ ​en​ ​un​ ​solo​ ​idioma,​ ​todo​ ​en​ ​Español,​ ​todo
en​ ​Inglés​ ​o​ ​también​ ​ser​ ​menos​ ​estricto​ ​y​ ​utilizar​ ​palabras​ ​en​ ​su​ ​mayoría​ ​en​ ​tu​ ​idioma​ ​nativo​ ​permitiendo
alguna​ ​excepción​ ​cuando​ ​aporte​ ​legibilidad​ ​y​ ​reducción​ ​de​ ​tamaño.

¿Por​ ​qué​ ​abreviaturas​ ​de​ ​3​ ​caracteres?
3​ ​es​ ​un​ ​número​ ​que​ ​nos​ ​permite​ ​una​ ​gran​ ​combinación​ ​de​ ​caracteres​ ​alfanuméricos​ ​con​ ​un​ ​tamaño​ ​muy
reducido.

Un​ ​problema​ ​que​ ​nos​ ​podemos​ ​encontrar​ ​con​ ​el​ ​uso​ ​de​ ​abreviaturas​ ​de​ ​3​ ​caracteres​ ​es​ ​la​ ​coincidencia​ ​de
varios​ ​términos,​ ​por​ ​ejemplo​ ​IMP​ ​se​ ​puede​ ​usar​ ​para​ ​los​ ​términos​ ​“importe”,​ ​“importar”​ ​y​ ​también

42

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

“imprimir”.​ ​En​ ​muchos​ ​casos​ ​el​ ​contexto​ ​facilita​ ​la​ ​interpretación​ ​del​ ​significado,​ ​es​ ​decir​ ​si​ ​la​ ​abreviatura
se​ ​escribiese​ ​sola,​ ​por​ ​ejemplo​ ​un​ ​campo​ ​IMP​ ​si​ ​está​ ​en​ ​una​ ​tabla​ ​de​ ​líneas​ ​de​ ​detalle​ ​es​ ​fácil​ ​interpretarlo
como​ ​importe​ ​antes​ ​que​ ​importación​ ​o​ ​impresión.​ ​Sin​ ​embargo,​ ​en​ ​muchos​ ​casos​ ​los​ ​identificadores​ ​son
compuestos​ ​de​ ​varias​ ​abreviaturas,​ ​de​ ​esta​ ​forma​ ​​IMP_TOT​​ ​es​ ​fácil​ ​interpretarlo​ ​como​ ​importe​ ​total,
SND_IMP​​ ​como​ ​senda​ ​de​ ​importación.​ ​Incluso​ ​para​ ​evitar​ ​estas​ ​coincidencias​ ​se​ ​pueden​ ​usar​ ​alteraciones
o​ ​abreviaturas​ ​estándar​ ​del​ ​mercado,​ ​por​ ​ejemplo​ ​PRT​ ​(print)​ ​para​ ​imprimir.​ ​De​ ​esta​ ​forma​ ​si​ ​vemos
VTA_FAC_PRT​​ ​lo​ ​interpretaremos​ ​como​ ​impresión​ ​de​ ​la​ ​factura​ ​de​ ​venta.

Es​ ​cierto​ ​que​ ​con​ ​4​ ​caracteres​ ​sería​ ​más​ ​fácil​ ​evitar​ ​algunas​ ​coincidencias​ ​como​ ​las​ ​comentadas
anteriormente,​ ​sin​ ​embargo​ ​la​ ​longitud​ ​de​ ​los​ ​campos​ ​se​ ​dispararía,​ ​incluso​ ​algunas​ ​abreviaturas​ ​serían
más​ ​complejas​ ​de​ ​elaborar​ ​ya​ ​que​ ​cuantos​ ​más​ ​caracteres​ ​más​ ​decisiones​ ​hay​ ​que​ ​utilizar​ ​para​ ​la
combinación​ ​de​ ​consonantes​ ​y​ ​vocales.​ ​En​ ​el​ ​ejemplo​ ​anterior​ ​​VNTA_FACT_PRNT​​ ​sería​ ​el​ ​mismo
identificador​ ​de​ ​impresión​ ​de​ ​facturas​ ​de​ ​venta​ ​con​ ​abreviaturas​ ​de​ ​4​ ​caracteres,​ ​como​ ​podemos​ ​apreciar
hay​ ​palabras​ ​difíciles​ ​de​ ​abreviar​ ​como​ ​venta​ ​que​ ​se​ ​podría​ ​haber​ ​abreviado​ ​como​ ​​VENT​,​ ​​VETA​,​ ​​VNTA​​ ​o
VTAS​​ ​no​ ​siendo​ ​ninguna​ ​de​ ​ellas​ ​demasiado​ ​satisfactoria.

Recordar​ ​3​ ​abreviaturas​ ​de​ ​3​ ​caracteres​ ​es​ ​más​ ​sencillo​ ​que​ ​de​ ​4​ ​ó​ ​más.​ ​Además,​ ​a​ ​medida​ ​que​ ​vamos
desarrollando​ ​las​ ​aplicaciones​ ​nos​ ​daremos​ ​cuenta​ ​de​ ​que​ ​se​ ​van​ ​construyendo​ ​objetos​ ​cuyo​ ​identificador
es​ ​cada​ ​vez​ ​más​ ​y​ ​más​ ​largo​ ​para​ ​poder​ ​expresar​ ​de​ ​forma​ ​concreta​ ​y​ ​única​ ​la​ ​funcionalidad​ ​del​ ​mismo.
Por​ ​ejemplo​ ​para​ ​el​ ​formulario​ ​de​ ​detalle​ ​de​ ​una​ ​línea​ ​de​ ​pedido​ ​de​ ​venta​ ​podríamos​ ​encontrarnos​ ​con
estas​ ​posibilidades:

Tipo Identificador

Sin​ ​abreviar VENTA_PEDIDO_LINEA_DETALLE

Abreviatura​ ​de​ ​4 VNTA_PEDI_LINE_DETA

Abreviatura​ ​de​ ​3 VTA_PED_LIN_DET

Ahora​ ​imagínate​ ​como​ ​se​ ​llamaría​ ​un​ ​tubo​ ​de​ ​ficha​ ​que​ ​genera​ ​una​ ​línea​ ​de​ ​factura​ ​de​ ​venta​ ​a​ ​partir​ ​de​ ​una
línea​ ​de​ ​pedido.

Tipo Identificador

Sin​ ​abreviar VENTA_PEDIDO_LINEA_TO_VENTA_FACTURA_LINEA

Abreviatura​ ​de​ ​4 VNTA_PEDI_LINE_DETA_TO_VNTA_FACT_LINE

Abreviatura​ ​de​ ​3 VTA_PED_LIN_DET_TO_VTA_FAC_LIN

Aplica​ ​cada​ ​uno​ ​de​ ​los​ ​tipos​ ​a​ ​todos​ ​los​ ​identificadores​ ​de​ ​tu​ ​aplicación​ ​y​ ​podrás​ ​comprobar​ ​como​ ​te
encontraras​ ​con​ ​objetos​ ​cuyos​ ​identificadores​ ​son​ ​extra​ ​largos.​ ​Sin​ ​duda​ ​las​ ​abreviaturas​ ​son​ ​un
magnífico​ ​recurso​ ​para​ ​reducir​ ​el​ ​tamaño​ ​y​ ​facilitar​ ​la​ ​legibilidad.
Por​ ​último​ ​indicar​ ​que​ ​cuando​ ​se​ ​establece​ ​un​ ​máximo​ ​de​ ​3​ ​caracteres​ ​en​ ​las​ ​abreviaturas​ ​no​ ​implica​ ​que
todas​ ​deban​ ​tener​ ​ese​ ​tamaño,​ ​también​ ​se​ ​admiten​ ​abreviaturas​ ​de​ ​menor​ ​tamaño​ ​como​ ​por​ ​ejemplo​ ​“A”,
“OK”.

43

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Evita​ ​el​ ​uso​ ​de​ ​preposiciones​ ​y​ ​conjunciones
Estas​ ​palabras​ ​no​ ​deben​ ​ser​ ​usadas​ ​cuando​ ​no​ ​aportan​ ​valor​ ​semántico​ ​significativo,​ ​algo​ ​que​ ​ocurre​ ​en​ ​la
mayoría​ ​de​ ​los​ ​casos.

Utiliza​ ​el​ ​guión​ ​bajo​ ​como​ ​separador​ ​de​ ​abreviaturas
Velneo​ ​no​ ​permite​ ​el​ ​uso​ ​de​ ​espacios​ ​en​ ​blanco​ ​ni​ ​caracteres​ ​especiales​ ​en​ ​los​ ​identificadores,​ ​por​ ​este
motivo​ ​esos​ ​caracteres​ ​son​ ​sustituidos​ ​de​ ​forma​ ​automática​ ​por​ ​el​ ​guión​ ​bajo​ ​“_”.​ ​Para​ ​facilitar​ ​la
legibilidad​ ​de​ ​los​ ​identificadores​ ​usaremos​ ​el​ ​separador​ ​entre​ ​cada​ ​abreviatura.

Tipo Identificador

Sin​ ​separador,​ ​difícil​ ​de​ ​leer VTAPEDLINDETTOVTAFACLIN

Con​ ​separador,​ ​más​ ​fácil​ ​de​ ​leer VTA_PED_LIN_DET_TO_VTA_FAC_LIN

No​ ​uses​ ​como​ ​sufijo​ ​de​ ​los​ ​identificadores​ ​el​ ​tipo​ ​de​ ​objeto
Hacerlo​ ​tiene​ ​2​ ​desventajas.​ ​La​ ​primera​ ​es​ ​aumentar​ ​el​ ​tamaño​ ​del​ ​identificador​ ​y​ ​la​ ​segunda​ ​es​ ​que
estarás​ ​aplicando​ ​una​ ​información​ ​redundante​ ​ya​ ​que​ ​el​ ​tipo​ ​de​ ​objeto​ ​está​ ​representado​ ​por​ ​su​ ​icono​ ​y​ ​en
la​ ​ventana​ ​de​ ​propiedad​ ​se​ ​indica​ ​el​ ​nombre​ ​del​ ​tipo​ ​de​ ​objeto.

Por​ ​lo​ ​tanto​ ​debemos​ ​evitar​ ​usar​ ​identificadores​ ​como​ ​​ACC_VTA_FAC_G_MEN​​ ​ya​ ​que​ ​como​ ​vemos​ ​además
de​ ​ser​ ​más​ ​largo​ ​la​ ​información​ ​que​ ​aporta​ ​es​ ​redundante,​ ​e​ ​incluso​ ​lo​ ​más​ ​probable​ ​es​ ​que​ ​allí​ ​donde​ ​se
use​ ​tan​ ​solo​ ​podríamos​ ​utilizar​ ​objetos​ ​de​ ​este​ ​tipo.

Usa​ ​el​ ​identificador​ ​de​ ​la​ ​tabla​ ​como​ ​prefijo​ ​de​ ​los​ ​objetos​ ​con​ ​ese​ ​origen
Una​ ​de​ ​las​ ​características​ ​de​ ​los​ ​objetos​ ​en​ ​Velneo​ ​es​ ​que​ ​disponen​ ​de​ ​origen​ ​y​ ​destino​ ​(ninguno,​ ​ficha​ ​o
lista),​ ​por​ ​este​ ​motivo​ ​es​ ​muy​ ​importante​ ​poder​ ​identificar​ ​el​ ​origen​ ​de​ ​cada​ ​objeto​ ​sin​ ​necesidad​ ​de​ ​revisar
en​ ​su​ ​propiedad​ ​el​ ​origen.

Por​ ​este​ ​motivo​ ​es​ ​importante​ ​que​ ​los​ ​identificadores​ ​de​ ​las​ ​tablas​ ​sean​ ​a​ ​la​ ​vez​ ​descriptivos​ ​y​ ​lo​ ​más
cortos​ ​posible.

44

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Aplicando​ ​el​ ​diccionario​ ​conseguimos​ ​tablas​ ​con​ ​identificadores​ ​de​ ​1​ ​abreviatura​ ​y​ ​otras​ ​2​ ​y​ ​hasta​ ​3
abreviaturas​ ​de​ ​3​ ​caracteres.​ ​En​ ​general​ ​no​ ​conviene​ ​sobrepasar​ ​las​ ​3​ ​abreviaturas​ ​ya​ ​que​ ​acabaríamos
teniendo​ ​identificadores​ ​demasiado​ ​largos.

Es​ ​habitual​ ​que​ ​haya​ ​tablas​ ​relacionadas​ ​bien​ ​por​ ​su​ ​funcionalidad​ ​o​ ​porque​ ​pertenecen​ ​al​ ​mismo
submódulo,​ ​como​ ​por​ ​ejemplo​ ​“​COM​”​ ​para​ ​compras​ ​y​ ​“​VTA​”​ ​para​ ​ventas.​ ​En​ ​estos​ ​casos​ ​es​ ​conveniente
que​ ​el​ ​dato​ ​“común”​ ​o​ ​agrupador​ ​sea​ ​el​ ​de​ ​más​ ​peso​ ​y​ ​se​ ​use​ ​como​ ​prefijo,​ ​en​ ​nuestro​ ​ejemplo​ ​es​ ​correcto
poner​ ​​VTA_PED​​ ​para​ ​pedido​ ​de​ ​venta​ ​en​ ​lugar​ ​de​ ​​PED_VTA​.​ ​De​ ​esta​ ​forma​ ​conseguimos​ ​que
alfabéticamente​ ​las​ ​tablas​ ​del​ ​mismo​ ​submódulo​ ​estén​ ​juntas.​ ​Si​ ​no​ ​aplicamos​ ​este​ ​criterio​ ​el​ ​orden
alfabético​ ​producirá​ ​una​ ​organización​ ​más​ ​caótica.

Usa​ ​identificadores​ ​que​ ​combinen​ ​origen​ ​y​ ​destino​ ​para​ ​tubos​ ​y​ ​procesos
Existen​ ​objetos​ ​en​ ​los​ ​que​ ​es​ ​muy​ ​importante​ ​tanto​ ​su​ ​origen​ ​como​ ​su​ ​destino.​ ​Un​ ​caso​ ​claro​ ​son​ ​los
tubos​ ​de​ ​ficha​ ​y​ ​lista.​ ​En​ ​estos​ ​objetos​ ​es​ ​conveniente​ ​que​ ​el​ ​identificador​ ​incluya​ ​ambas​ ​tablas.

45

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

En​ ​el​ ​ejemplo​ ​podemos​ ​apreciar​ ​como​ ​cuando​ ​la​ ​tabla​ ​de​ ​origen​ ​y​ ​destino​ ​son​ ​diferentes​ ​se​ ​separan​ ​con​ ​la
abreviatura​ ​​TO​.​ ​Es​ ​cierto​ ​que​ ​está​ ​en​ ​inglés,​ ​pero​ ​es​ ​una​ ​abreviatura​ ​corta​ ​y​ ​fácil​ ​de​ ​leer​ ​e​ ​interpretar.

Podemos​ ​apreciar​ ​que​ ​cuando​ ​la​ ​tabla​ ​de​ ​origen​ ​y​ ​destino​ ​es​ ​la​ ​misma​ ​se​ ​está​ ​aplicando​ ​en​ ​este​ ​caso​ ​el
sufijo​ ​​_DUP​​ ​para​ ​indicar​ ​que​ ​el​ ​objeto​ ​creará​ ​un​ ​duplicado​ ​del​ ​registro​ ​de​ ​origen.

En​ ​el​ ​último​ ​ejemplo​ ​el​ ​sufijo​ ​es​ ​​_MEM​,​ ​esto​ ​se​ ​utiliza​ ​para​ ​indicar​ ​que​ ​se​ ​generarán​ ​los​ ​registros​ ​de​ ​origen
en​ ​la​ ​misma​ ​tabla​ ​de​ ​destino​ ​pero​ ​en​ ​memoria,​ ​en​ ​lugar​ ​de​ ​repetir​ ​el​ ​identificador​ ​completo​ ​de​ ​la​ ​tabla
PRS_OBJ_W_MEM​​ ​se​ ​utiliza​ ​solo​ ​el​ ​sufijo​ ​diferencial.​ ​Estos​ ​casos​ ​son​ ​bastante​ ​excepcionales​ ​por​ ​lo​ ​que​ ​si
se​ ​aplica​ ​la​ ​norma​ ​aunque​ ​el​ ​identificador​ ​sería​ ​mucho​ ​más​ ​largo​ ​​PRS_OBJ_W_TO_PRS_OBJ_W_MEM​​ ​sigue
siendo​ ​igual​ ​de​ ​válido.

Usa​ ​sufijos​ ​en​ ​los​ ​identificadores​ ​de​ ​las​ ​tablas,​ ​tablas​ ​estáticas​ ​y​ ​variables​ ​globales
El​ ​editor​ ​no​ ​permite​ ​que​ ​dos​ ​tablas​ ​tengan​ ​el​ ​mismo​ ​identificador​ ​en​ ​el​ ​mismo​ ​proyecto,​ ​pero​ ​sí​ ​es​ ​posible
crear​ ​dos​ ​tablas​ ​con​ ​el​ ​mismo​ ​identificador​ ​en​ ​distintos​ ​proyectos.​ ​Cuando​ ​se​ ​trabaja​ ​con​ ​múltiples
soluciones​ ​o​ ​múltiples​ ​proyectos​ ​heredados​ ​o​ ​incluso​ ​cuando​ ​se​ ​trabaja​ ​sobre​ ​un​ ​núcleo​ ​común​ ​a​ ​todas
las​ ​aplicaciones​ ​hay​ ​que​ ​tener​ ​especial​ ​cuidado​ ​en​ ​conseguir​ ​que​ ​no​ ​se​ ​repita​ ​el​ ​identificador​ ​de​ ​una​ ​tabla.

El​ ​problema​ ​se​ ​produce​ ​cuando​ ​al​ ​instanciar​ ​ambos​ ​proyectos​ ​se​ ​realiza​ ​sobre​ ​la​ ​misma​ ​carpeta​ ​del​ ​disco
produciéndose​ ​un​ ​conflicto​ ​al​ ​solo​ ​existir​ ​una​ ​tabla​ ​que​ ​tiene​ ​dos​ ​definiciones​ ​de​ ​estructura​ ​diferentes​ ​en
los​ ​proyectos.

Para​ ​evitar​ ​esta​ ​duplicidad​ ​de​ ​identificadores​ ​es​ ​conveniente​ ​usar​ ​un​ ​sufijo​ ​diferenciador​ ​que​ ​permita
poner​ ​identificadores​ ​a​ ​las​ ​tablas​ ​sin​ ​riesgo​ ​de​ ​caer​ ​en​ ​la​ ​duplicidad.​ ​Conviene​ ​que​ ​esos​ ​sufijos​ ​tampoco
se​ ​repitan.​ ​Se​ ​puede​ ​utilizar​ ​el​ ​criterio​ ​de​ ​un​ ​sufijo​ ​diferente​ ​por​ ​aplicación,​ ​módulo,​ ​etc.

Como​ ​el​ ​número​ ​de​ ​aplicaciones​ ​o​ ​módulos​ ​no​ ​suele​ ​ser​ ​muy​ ​alto,​ ​se​ ​pueden​ ​utilizar​ ​sufijos​ ​con​ ​una​ ​sola
letra,​ ​por​ ​ejemplo:​ ​“​_G​”​ ​para​ ​gestión,​ ​“​_C​”​ ​para​ ​contabilidad,​ ​“​_M​”​ ​para​ ​maestros​ ​generales,​ ​“​_W​”​ ​para
configuración,​ ​etc.​ ​En​ ​caso​ ​que​ ​el​ ​nº​ ​de​ ​aplicaciones​ ​o​ ​módulos​ ​sea​ ​muy​ ​grande​ ​se​ ​pueden​ ​colocar​ ​2​ ​ó
más​ ​letras.

Para​ ​mantener​ ​un​ ​criterio​ ​único,​ ​se​ ​aplicará​ ​el​ ​mismo​ ​criterio​ ​de​ ​las​ ​tablas​ ​a​ ​las​ ​tablas​ ​estáticas​ ​y​ ​también
a​ ​las​ ​variables​ ​globales​ ​que​ ​tengan​ ​una​ ​relación​ ​directa​ ​con​ ​un​ ​módulo.

No​ ​uses​ ​el​ ​sufijo​ ​de​ ​la​ ​tabla​ ​en​ ​los​ ​identificadores​ ​de​ ​campos​ ​e​ ​índices
Aunque​ ​las​ ​tablas​ ​tengan​ ​un​ ​sufijo​ ​y​ ​cuando​ ​añadimos​ ​campos​ ​a​ ​una​ ​tabla​ ​se​ ​crean​ ​con​ ​el​ ​mismo
identificador​ ​de​ ​la​ ​tabla​ ​tanto​ ​el​ ​campo​ ​como​ ​el​ ​índice​ ​correspondiente.​ ​Por​ ​mejorar​ ​la​ ​legibilidad​ ​de​ ​los
subobjetos​ ​de​ ​la​ ​tabla:​ ​campos,​ ​índices​ ​y​ ​actualizaciones,​ ​quitaremos​ ​del​ ​identificador​ ​el​ ​sufijo
correspondiente.

Por​ ​ejemplo,​ ​si​ ​la​ ​tabla​ ​de​ ​artículos​ ​tiene​ ​como​ ​identificador​ ​“​ART_M​”,​ ​las​ ​diferentes​ ​tablas​ ​de​ ​líneas​ ​de
detalle​ ​de​ ​compras​ ​y​ ​ventas​ ​tendrán​ ​un​ ​puntero​ ​al​ ​artículo​ ​cuyo​ ​campo,​ ​índice​ ​o​ ​actualización​ ​tendrá​ ​como
identificador​ ​“​ART​”​ ​en​ ​lugar​ ​de​ ​“​ART_M​”.

Excepciones​ ​para​ ​que​ ​los​ ​campos​ ​punteros​ ​a​ ​tabla​ ​maestra​ ​no​ ​usen​ ​su​ ​mismo​ ​identificador
Por​ ​regla​ ​general​ ​coincidirá​ ​el​ ​identificador​ ​del​ ​campo​ ​con​ ​el​ ​de​ ​la​ ​tabla​ ​o​ ​tabla​ ​estática​ ​apuntada.​ ​Es​ ​decir,
el​ ​campo​ ​puntero​ ​al​ ​artículo​ ​se​ ​identificará​ ​como​ ​“​ART​”​ ​ya​ ​que​ ​su​ ​tabla​ ​maestra​ ​se​ ​identifica​ ​como

46

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

“​ART_M​”.

Sin​ ​embargo,​ ​se​ ​pueden​ ​dar​ ​circunstancias​ ​que​ ​no​ ​permitan​ ​usar​ ​el​ ​identificador​ ​exacto​ ​de​ ​la​ ​tabla:

Si​ ​en​ ​una​ ​misma​ ​tabla​ ​existen​ ​varios​ ​punteros​ ​a​ ​la​ ​misma​ ​tabla​ ​maestra,​ ​es​ ​lógico​ ​que​ ​el​ ​identificador​ ​sea
más​ ​explícito,​ ​y​ ​por​ ​lo​ ​tanto​ ​diferente​ ​al​ ​de​ ​la​ ​tabla​ ​maestra.​ ​Por​ ​ejemplo​ ​si​ ​una​ ​entidad​ ​puede​ ​tener​ ​forma
de​ ​pago​ ​para​ ​cobros​ ​y​ ​forma​ ​de​ ​pago​ ​para​ ​pagos,​ ​si​ ​la​ ​tabla​ ​de​ ​formas​ ​de​ ​pago​ ​se​ ​identifica​ ​como
“​FPG_M​”,​ ​los​ ​campos​ ​podrían​ ​identificarse​ ​como​ ​“​FPG_COB​”​ ​y​ ​“​FPG_PAG​”​ ​respectivamente.

En​ ​ocasiones​ ​hay​ ​tablas​ ​que​ ​contienen​ ​múltiples​ ​tipos​ ​de​ ​registros,​ ​por​ ​ejemplo​ ​el​ ​caso​ ​de​ ​la​ ​tabla​ ​de
entidades​ ​o​ ​contactos​ ​que​ ​puede​ ​servir​ ​para​ ​almacenar​ ​diferentes​ ​tipos​ ​de​ ​registros​ ​como​ ​clientes,
proveedores,​ ​comerciales,​ ​etc.​ ​En​ ​estos​ ​caso​ ​se​ ​podrían​ ​utilizar​ ​los​ ​siguientes​ ​identificadores​ ​en​ ​la​ ​tabla
de​ ​factura​ ​de​ ​venta:

Tipo Identificador

ENT Cliente Desaconsejable​ ​si​ ​en​ ​la​ ​tabla​ ​pueden​ ​existir​ ​otros​ ​campos​ ​punteros​ ​a​ ​la
entidad​ ​como​ ​el​ ​comercial.

ENT_CLT Cliente Es​ ​válido​ ​ya​ ​que​ ​permite​ ​que​ ​el​ ​comercial​ ​tenga​ ​como​ ​identificador
ENT_CMR​.

CLT Cliente Este​ ​es​ ​el​ ​identificador​ ​más​ ​corto,​ ​pero​ ​además​ ​es​ ​el​ ​más​ ​explícito​ ​ya​ ​que
indica​ ​el​ ​uso​ ​del​ ​dato​ ​y​ ​no​ ​el​ ​origen​ ​de​ ​la​ ​tabla.​ ​Para​ ​campos​ ​de​ ​uso
masivo​ ​como​ ​el​ ​de​ ​clientes,​ ​proveedores,​ ​etc.​ ​Este​ ​identificador​ ​puede​ ​ser
el​ ​más​ ​conveniente.

En​ ​cualquier​ ​caso​ ​debe​ ​existir​ ​un​ ​consenso​ ​en​ ​el​ ​equipo​ ​de​ ​cuál​ ​de​ ​los​ ​2​ ​últimos​ ​utilizar.

No​ ​te​ ​preocupes​ ​por​ ​los​ ​identificadores​ ​repetidos​ ​en​ ​el​ ​proyecto
Es​ ​cierto​ ​que​ ​si​ ​miramos​ ​los​ ​identificadores​ ​de​ ​la​ ​carpeta​ ​de​ ​una​ ​tabla​ ​encontraremos​ ​muchas
repeticiones.​ ​Sin​ ​embargo,​ ​esto​ ​es​ ​algo​ ​permitido​ ​por​ ​el​ ​editor​ ​de​ ​Velneo​ ​ya​ ​que​ ​el​ ​identificador​ ​“completo”
de​ ​un​ ​objeto​ ​viene​ ​dado​ ​por:​ ​El​ ​proyecto​ ​+​ ​el​ ​tipo​ ​de​ ​objeto​ ​+​ ​el​ ​identificador.

De​ ​esta​ ​forma​ ​para​ ​un​ ​mismo​ ​proyecto​ ​podemos​ ​tener​ ​objetos​ ​con​ ​el​ ​mismo​ ​identificador​ ​siempre​ ​que
sean​ ​de​ ​diferente​ ​tipo.​ ​Esto​ ​nos​ ​permite​ ​utilizar​ ​el​ ​mismo​ ​criterio​ ​para​ ​todo​ ​los​ ​objetos​ ​sin​ ​necesidad​ ​de
recurrir​ ​a​ ​un​ ​prefijo​ ​o​ ​sufijo​ ​que​ ​lo​ ​indique​ ​el​ ​tipo​ ​de​ ​objeto.

​ ​

47

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Base​ ​de​ ​datos
La​ ​pieza​ ​más​ ​importante​ ​en​ ​el​ ​análisis​ ​de​ ​una​ ​aplicación​ ​es​ ​sin​ ​duda​ ​la​ ​base​ ​de​ ​datos.​ ​Podríamos​ ​afirmar
que​ ​un​ ​buen​ ​diseño​ ​de​ ​base​ ​de​ ​datos​ ​garantiza​ ​rendimiento​ ​y​ ​mantenibilidad​ ​mientras​ ​que​ ​un​ ​mal​ ​diseño
nos​ ​garantiza​ ​problemas​ ​que​ ​se​ ​irán​ ​agravando​ ​con​ ​el​ ​paso​ ​del​ ​tiempo.

Demos​ ​tratar​ ​de​ ​diseñar​ ​nuestra​ ​base​ ​de​ ​datos​ ​con​ ​la​ ​mayor​ ​sencillez​ ​posible,​ ​de​ ​lo​ ​contrario​ ​cualquier
corrección,​ ​mejora​ ​o​ ​evolución​ ​se​ ​convierte​ ​en​ ​una​ ​tarea​ ​compleja​ ​y​ ​por​ ​lo​ ​tanto​ ​mucho​ ​más​ ​costosa.​ ​A
continuación​ ​vamos​ ​a​ ​ver​ ​algunas​ ​buenas​ ​prácticas​ ​a​ ​la​ ​hora​ ​de​ ​diseñar​ ​la​ ​estructura​ ​de​ ​base​ ​de​ ​datos​ ​de
nuestra​ ​aplicación.

Una​ ​base​ ​de​ ​datos,​ ​un​ ​responsable
Dada​ ​la​ ​importancia​ ​de​ ​la​ ​base​ ​de​ ​datos​ ​es​ ​fundamental​ ​que​ ​esté​ ​bajo​ ​la​ ​tutela​ ​de​ ​un​ ​único​ ​responsable.
Esto​ ​no​ ​significa​ ​que​ ​solo​ ​una​ ​persona​ ​pueda​ ​hacer​ ​cambios,​ ​que​ ​también​ ​puede​ ​ser​ ​una​ ​buena​ ​práctica,
sino​ ​que​ ​no​ ​debería​ ​de​ ​realizarse​ ​ningún​ ​cambio​ ​en​ ​la​ ​base​ ​de​ ​datos​ ​sin​ ​que​ ​el​ ​responsable​ ​esté​ ​informado
y​ ​valide​ ​dicho​ ​cambio.​ ​Ya​ ​que​ ​de​ ​no​ ​hacerse​ ​así​ ​corremos​ ​el​ ​riesgo​ ​de​ ​que​ ​la​ ​base​ ​de​ ​datos​ ​contenga
campos​ ​que​ ​ya​ ​no​ ​se​ ​utilizan​ ​pero​ ​que​ ​nadie​ ​se​ ​atreve​ ​a​ ​borrar,​ ​índices​ ​duplicados​ ​en​ ​tablas​ ​muy​ ​grandes
donde​ ​es​ ​más​ ​difícil​ ​controlar​ ​todo​ ​lo​ ​que​ ​ya​ ​existe,​ ​etc.​ ​En​ ​definitiva,​ ​cada​ ​base​ ​de​ ​datos​ ​debe​ ​tener​ ​un
responsable​ ​único.

Esquemas

Crea​ ​esquemas​ ​para​ ​documentar​ ​las​ ​tablas
Cuando​ ​comenzamos​ ​a​ ​desarrollar​ ​una​ ​aplicación​ ​lo​ ​haremos​ ​desarrollando​ ​la​ ​estructura​ ​de​ ​base​ ​de
datos,​ ​para​ ​realizar​ ​esa​ ​tarea​ ​es​ ​recomendable​ ​crear​ ​un​ ​objeto​ ​esquema​ ​que​ ​nos​ ​permitirá​ ​crear​ ​las​ ​tablas
de​ ​forma​ ​visual​ ​y​ ​además​ ​dejarlo​ ​documentado​ ​para​ ​en​ ​el​ ​futuro​ ​poder​ ​recordar​ ​de​ ​un​ ​vistazo​ ​las
relaciones​ ​entre​ ​las​ ​diferentes​ ​tablas.​ ​El​ ​objeto​ ​esquema​ ​hace​ ​bueno​ ​el​ ​dicho​ ​“Una​ ​imagen​ ​vale​ ​más​ ​que
mil​ ​palabras”.

Conviene​ ​crear​ ​las​ ​tabla​ ​directamente​ ​desde​ ​el​ ​esquema​ ​ya​ ​que​ ​además​ ​de​ ​crear​ ​el​ ​objeto​ ​ya​ ​lo​ ​dejamos
incrustado​ ​en​ ​el​ ​esquema​ ​lo​ ​que​ ​nos​ ​facilitará​ ​crear​ ​las​ ​relaciones​ ​de​ ​forma​ ​visual.

48

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Crea​ ​múltiples​ ​esquemas
A​ ​medida​ ​que​ ​vamos​ ​añadiendo​ ​tablas​ ​a​ ​nuestro​ ​proyecto​ ​conviene​ ​crear​ ​múltiples​ ​esquemas​ ​con​ ​el​ ​doble
objetivo​ ​de​ ​evitar​ ​tener​ ​un​ ​esquema​ ​con​ ​tantas​ ​tablas​ ​y​ ​relaciones​ ​que​ ​resulta​ ​muy​ ​complicado​ ​ver​ ​la
estructura​ ​y​ ​entenderla,​ ​y​ ​por​ ​otro​ ​lado​ ​nos​ ​permite​ ​tener​ ​esquemas​ ​específicos​ ​con​ ​la​ ​estructura​ ​de​ ​sub
módulos​ ​o​ ​funcionalidades​ ​específicas,​ ​consiguiendo​ ​que​ ​otros​ ​desarrolladores​ ​entienda​ ​la​ ​estructura​ ​de
tablas​ ​y​ ​sus​ ​relaciones​ ​rápidamente.

Número​ ​de​ ​tablas​ ​y​ ​tamaño​ ​de​ ​registros

¿El​ ​número​ ​de​ ​tablas​ ​influye​ ​en​ ​el​ ​rendimiento?
Salvo​ ​que​ ​estemos​ ​hablando​ ​de​ ​miles​ ​de​ ​tablas,​ ​en​ ​cuyo​ ​caso​ ​podría​ ​afectarnos​ ​en​ ​el​ ​tiempo​ ​de​ ​reinicio​ ​de
la​ ​instancia​ ​en​ ​el​ ​servidor,​ ​a​ ​nivel​ ​de​ ​ejecución​ ​hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​nos​ ​afectan​ ​las​ ​tablas​ ​en​ ​uso,
no​ ​las​ ​declaradas​ ​en​ ​el​ ​proyecto.

¿El​ ​tamaño​ ​de​ ​registro​ ​de​ ​una​ ​tabla​ ​como​ ​influye?
Influye​ ​en​ ​el​ ​tamaño​ ​de​ ​las​ ​transacciones,​ ​en​ ​el​ ​nº​ ​de​ ​conexiones​ ​que​ ​un​ ​cliente​ ​tiene​ ​que​ ​establecer​ ​con​ ​el
servidor​ ​para​ ​obtener​ ​los​ ​datos​ ​de​ ​una​ ​lista​ ​de​ ​registros​ ​y​ ​en​ ​los​ ​tiempos​ ​de​ ​regeneración​ ​de​ ​la​ ​tabla​ ​ante
un​ ​cambio​ ​de​ ​estructura.

Por​ ​lo​ ​tanto​ ​debemos​ ​intentar​ ​reducir​ ​el​ ​tamaño​ ​de​ ​registro​ ​de​ ​una​ ​tabla​ ​en​ ​la​ ​medida​ ​de​ ​lo​ ​posible.​ ​Unas
buenas​ ​prácticas​ ​podrían​ ​ser:

● Evita​ ​crear​ ​campos​ ​que​ ​no​ ​se​ ​usan.
● Si​ ​se​ ​necesitan​ ​campos​ ​alfabéticos​ ​muy​ ​largos​ ​(>100​ ​caracteres)​ ​que​ ​se​ ​usan​ ​en​ ​un​ ​porcentaje

bajo​ ​de​ ​registros,​ ​puede​ ​ser​ ​más​ ​óptimo​ ​crearlo​ ​de​ ​tipo​ ​objeto​ ​texto,​ ​de​ ​esta​ ​forma​ ​en​ ​el​ ​registro
ocupa​ ​8​ ​bytes​ ​y​ ​en​ ​el​ ​contenedor​ ​las​ ​celdas​ ​que​ ​necesite​ ​de​ ​512​ ​bytes.

● Evita​ ​la​ ​información​ ​repetida,​ ​por​ ​ejemplo,​ ​intenta​ ​no​ ​duplicar​ ​el​ ​nombre​ ​de​ ​los​ ​artículos​ ​en​ ​las
líneas​ ​de​ ​movimientos.

● Extrema​ ​el​ ​tamaño​ ​de​ ​registros​ ​en​ ​las​ ​tablas​ ​que​ ​vayan​ ​a​ ​contener​ ​millones​ ​de​ ​registros.

49

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

¿Es​ ​mejor​ ​tener​ ​muchas​ ​tablas​ ​con​ ​un​ ​único​ ​tipo​ ​de​ ​registro​ ​o​ ​es​ ​mejor​ ​tener​ ​una​ ​única​ ​tabla​ ​con
múltiples​ ​tipos​ ​de​ ​registro?
Si​ ​el​ ​número​ ​de​ ​registros​ ​no​ ​es​ ​elevado,​ ​es​ ​decir​ ​no​ ​contendrá​ ​la​ ​tabla​ ​millones​ ​de​ ​registros)​ ​será​ ​más
cómodo​ ​crear​ ​una​ ​única​ ​tabla​ ​con​ ​un​ ​campo​ ​que​ ​identifique​ ​el​ ​tipo​ ​de​ ​registro.

El​ ​campo​ ​de​ ​tipo​ ​de​ ​registro​ ​para​ ​que​ ​esté​ ​bien​ ​documentado​ ​debería​ ​apuntar​ ​a​ ​una​ ​tabla​ ​estática​ ​evitando
así​ ​tener​ ​que​ ​documentar​ ​los​ ​valores​ ​del​ ​mismo​ ​por​ ​los​ ​diferentes​ ​lugares​ ​de​ ​la​ ​aplicación​ ​donde​ ​se​ ​use.

Otro​ ​factor​ ​a​ ​tener​ ​en​ ​cuenta​ ​es​ ​el​ ​número​ ​de​ ​índices​ ​que​ ​se​ ​van​ ​a​ ​crear.​ ​Si​ ​por​ ​ejemplo​ ​vamos​ ​a​ ​crear​ ​los
típicos​ ​índices​ ​de​ ​código,​ ​nombre,​ ​palabras​ ​y​ ​trozos​ ​y​ ​tenemos​ ​5​ ​tipos​ ​de​ ​registros​ ​vamos​ ​a​ ​crear​ ​20
índices.​ ​Este​ ​valor​ ​no​ ​es​ ​un​ ​problema,​ ​pero​ ​si​ ​vamos​ ​a​ ​tener​ ​que​ ​crear​ ​un​ ​número​ ​alto​ ​de​ ​índices​ ​(>200)​ ​tal
vez​ ​debemos​ ​replantearnos​ ​el​ ​uso​ ​de​ ​tablas​ ​independientes.

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​aunque​ ​esta​ ​tabla​ ​tenga​ ​muchos​ ​índices,​ ​estarán​ ​condicionados​ ​de​ ​tal​ ​forma
que​ ​en​ ​cada​ ​índice​ ​solo​ ​encontraremos​ ​los​ ​registros​ ​de​ ​un​ ​determinado​ ​tipo.

Tipos​ ​de​ ​tablas

¿Cuándo​ ​es​ ​conveniente​ ​usar​ ​una​ ​tabla​ ​de​ ​tipo​ ​maestro​ ​arbolada?
Cuando​ ​tengamos​ ​que​ ​representar​ ​los​ ​registros​ ​de​ ​dicha​ ​tabla​ ​en​ ​un​ ​árbol​ ​en​ ​el​ ​que​ ​​ ​cada​ ​nivel​ ​representa
una​ ​relación​ ​de​ ​herencia​ ​entre​ ​los​ ​registros.

Ejemplo​ ​habituales​ ​son​ ​el​ ​plan​ ​de​ ​cuenta​ ​de​ ​contabilidad,​ ​clasificaciones​ ​de​ ​familias​ ​y​ ​subfamilias,​ ​etc.

¿Qué​ ​tamaño​ ​de​ ​campo​ ​ID​ ​debo​ ​usar​ ​en​ ​una​ ​tabla​ ​arbolada?
El​ ​menor​ ​posible​ ​que​ ​te​ ​permita​ ​contener​ ​el​ ​mayor​ ​código​ ​que​ ​se​ ​necesita​ ​grabar.​ ​Es​ ​decir,​ ​debemos​ ​evitar
poner​ ​un​ ​campo​ ​código​ ​en​ ​el​ ​que​ ​dejemos​ ​un​ ​tamaño​ ​mayor​ ​“por​ ​si​ ​acaso”.

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​el​ ​tamaño​ ​del​ ​ID​ ​influye​ ​en​ ​los​ ​índices​ ​y​ ​también​ ​en​ ​el​ ​tamaño​ ​de​ ​los​ ​campos
que​ ​apuntan​ ​a​ ​esta​ ​tabla​ ​como​ ​maestra.​ ​Por​ ​lo​ ​tanto​ ​afecta​ ​al​ ​rendimiento,​ ​cuanto​ ​menor​ ​sea​ ​el​ ​código
más​ ​rápido​ ​se​ ​manejará​ ​la​ ​tabla.

Por​ ​este​ ​motivo​ ​se​ ​suelen​ ​usar​ ​campos​ ​alfabéticos​ ​“comprimidos”​ ​como​ ​el​ ​​Alfa​ ​64​​ ​(Ahorro​ ​del​ ​25%)​ ​y​ ​​Alfa
40​​ ​(Ahorro​ ​del​ ​33%)​ ​que​ ​nos​ ​permiten​ ​contener​ ​más​ ​caracteres​ ​en​ ​el​ ​código​ ​con​ ​una​ ​menor​ ​ocupación​ ​en
disco.

¿Cuándo​ ​es​ ​conveniente​ ​usar​ ​tablas​ ​de​ ​tipo​ ​histórico?
Cuando​ ​se​ ​den​ ​las​ ​2​ ​siguientes​ ​circunstancias:

1. La​ ​tabla​ ​no​ ​tiene​ ​un​ ​código​ ​único​ ​que​ ​identifique​ ​al​ ​registro​ ​sino​ ​que​ ​almacena​ ​información​ ​que​ ​no
está​ ​codificada,​ ​o​ ​tiene​ ​múltiples​ ​maestros​ ​relacionados,​ ​todos​ ​ellos​ ​con​ ​el​ ​mismo​ ​peso.

2. La​ ​tabla​ ​nunca​ ​será​ ​maestra​ ​de​ ​otra​ ​tabla​ ​plural.​ ​Esto​ ​se​ ​debe​ ​tener​ ​en​ ​cuenta​ ​para​ ​que​ ​en​ ​el​ ​caso
de​ ​que​ ​exista​ ​un​ ​plural​ ​no​ ​nos​ ​veamos​ ​obligados​ ​a​ ​incluir​ ​múltiples​ ​campos​ ​punteros​ ​para​ ​resolver
la​ ​clave​ ​única​ ​que​ ​se​ ​haya​ ​creada​ ​en​ ​esta​ ​tabla​ ​histórica.

¿Y​ ​si​ ​creo​ ​siempre​ ​todas​ ​las​ ​tablas​ ​maestras?
Es​ ​cierto,​ ​que​ ​evitar​ ​crear​ ​tablas​ ​históricas​ ​y​ ​en​ ​su​ ​lugar​ ​crearlas​ ​siempre​ ​como​ ​maestras​ ​nos​ ​evita​ ​la​ ​2ª
circunstancia​ ​de​ ​la​ ​pregunta​ ​anterior,​ ​y​ ​es​ ​cierto​ ​que​ ​en​ ​la​ ​mayoría​ ​de​ ​los​ ​casos​ ​nos​ ​servirá​ ​aplicar​ ​este
criterio​ ​de​ ​todas​ ​maestros.

50

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Sin​ ​embargo,​ ​existen​ ​algunas​ ​excepciones​ ​que​ ​debemos​ ​tener​ ​en​ ​cuenta.

Si​ ​tengo​ ​que​ ​apuntar​ ​a​ ​una​ ​tabla​ ​con​ ​punteros​ ​indirectos​ ​reales​ ​usando​ ​campos​ ​para​ ​resolver​ ​el​ ​índice​ ​de
clave​ ​que​ ​no​ ​es​ ​el​ ​​ID​,​ ​no​ ​me​ ​sirve​ ​de​ ​nada​ ​que​ ​la​ ​tabla​ ​sea​ ​maestra,​ ​al​ ​contrario​ ​me​ ​obliga​ ​a​ ​mantener​ ​un
campo​ ​y​ ​un​ ​índice​ ​innecesarios.

Si​ ​creamos​ ​la​ ​tabla​ ​como​ ​maestra​ ​y​ ​apuntamos​ ​a​ ​ella​ ​a​ ​través​ ​del​ ​código​ ​(​ID​)​ ​obteniéndolo​ ​con​ ​una
búsqueda​ ​por​ ​otro​ ​de​ ​sus​ ​índices​ ​de​ ​clave​ ​única​ ​compuesto​ ​por​ ​uno​ ​o​ ​varios​ ​campos​ ​que​ ​no​ ​son​ ​el​ ​​ID​,
tendré​ ​problemas​ ​de​ ​refactorización​ ​de​ ​datos​ ​en​ ​el​ ​caso​ ​de​ ​que​ ​cambien​ ​los​ ​campos​ ​que​ ​componen​ ​el
índice​ ​de​ ​clave,​ ​esto​ ​me​ ​obligaría​ ​a​ ​tener​ ​que​ ​programar​ ​el​ ​control​ ​del​ ​cambio​ ​de​ ​valor​ ​de​ ​dichos​ ​campos.
Por​ ​ese​ ​motivo​ ​es​ ​preferible​ ​apuntar​ ​los​ ​registros​ ​de​ ​este​ ​tipo​ ​de​ ​tablas​ ​con​ ​punteros​ ​indirectos​ ​que
reaccionan​ ​automáticamente​ ​al​ ​cambio​ ​de​ ​valores​ ​con​ ​los​ ​que​ ​se​ ​resuelve​ ​el​ ​puntero​ ​al​ ​índice​ ​de​ ​clave
única.

Por​ ​ejemplo,​ ​una​ ​tabla​ ​de​ ​estadística​ ​cuyo​ ​índice​ ​de​ ​clave​ ​única​ ​viene​ ​dado​ ​por​ ​los​ ​campos​ ​empresa,​ ​año,
mes​ ​y​ ​cliente,​ ​deberíamos​ ​apuntar​ ​desde​ ​la​ ​tabla​ ​que​ ​actualiza​ ​sus​ ​datos​ ​a​ ​través​ ​de​ ​un​ ​puntero​ ​indirecto
resuelto​ ​con​ ​campos​ ​de​ ​la​ ​tabla.​ ​En​ ​este​ ​caso​ ​definir​ ​la​ ​tabla​ ​como​ ​histórica​ ​puede​ ​ser​ ​una​ ​buena​ ​práctica.

¿Cuándo​ ​es​ ​conveniente​ ​usar​ ​tablas​ ​de​ ​extensión?
Esta​ ​tipo​ ​de​ ​tabla​ ​debemos​ ​verla​ ​siempre​ ​como​ ​una​ ​solución​ ​a​ ​un​ ​problema​ ​que​ ​no​ ​tenga​ ​otras
alternativas​ ​y​ ​crearla​ ​solo​ ​cuando​ ​no​ ​nos​ ​quede​ ​más​ ​remedio.

Los​ ​casos​ ​más​ ​habituales​ ​son:

1. Tengo​ ​que​ ​añadir​ ​campos​ ​a​ ​una​ ​tabla​ ​que​ ​está​ ​en​ ​un​ ​proyecto​ ​(núcleo​ ​estándar)​ ​que​ ​no​ ​puedo​ ​o
quiero​ ​modificar​ ​porque​ ​cuando​ ​se​ ​vuelva​ ​a​ ​actualizar​ ​estaría​ ​obligado​ ​a​ ​repetir​ ​los​ ​cambios.​ ​En
general​ ​son​ ​personalizaciones​ ​para​ ​un​ ​cliente​ ​concreto​ ​sobre​ ​una​ ​tabla​ ​estándar​ ​para​ ​todos​ ​mis
clientes​ ​o​ ​los​ ​de​ ​un​ ​sector.

2. Cuando​ ​tengo​ ​una​ ​tabla​ ​con​ ​cientos​ ​de​ ​miles​ ​o​ ​millones​ ​de​ ​registros​ ​y​ ​hay​ ​un​ ​grupo​ ​de​ ​campos
que​ ​se​ ​usan​ ​en​ ​un​ ​%​ ​bajo​ ​de​ ​registros​ ​(<20%)​ ​y​ ​que​ ​hacen​ ​crecer​ ​el​ ​tamaño​ ​del​ ​registro​ ​de​ ​forma
significativa,​ ​por​ ​ejemplo​ ​pasamos​ ​de​ ​un​ ​tamaño​ ​de​ ​registros​ ​de​ ​400​ ​bytes​ ​a​ ​3.000​ ​bytes.

¿Por​ ​qué​ ​hay​ ​que​ ​evitarla​ ​en​ ​la​ ​medida​ ​de​ ​lo​ ​posible?​ ​Fundamentalmente​ ​para​ ​aplicar​ ​el​ ​principio​ ​de
sencillez​ ​que​ ​facilite​ ​su​ ​desarrollo​ ​y​ ​posterior​ ​mantenibilidad.​ ​Pero​ ​no​ ​debemos​ ​sacar​ ​la​ ​conclusión​ ​de​ ​que
no​ ​debemos​ ​usarla,​ ​simplemente​ ​usarla​ ​con​ ​rigor​ ​y​ ​en​ ​los​ ​casos​ ​en​ ​los​ ​que​ ​sea​ ​estrictamente​ ​necesario.

¿Cuándo​ ​es​ ​conveniente​ ​usar​ ​tablas​ ​submaestras?
Como​ ​su​ ​nombre​ ​indica​ ​es​ ​conveniente​ ​cuando​ ​una​ ​tabla​ ​tiene​ ​una​ ​dependencia​ ​directa​ ​de​ ​una​ ​tabla
maestra,​ ​de​ ​tal​ ​forma​ ​que​ ​podemos​ ​asegurar​ ​que​ ​no​ ​tiene​ ​sentido​ ​que​ ​exista​ ​un​ ​registro​ ​en​ ​la​ ​tabla
submaestra​ ​sin​ ​que​ ​exista​ ​previamente​ ​el​ ​registro​ ​de​ ​la​ ​maestra.

Un​ ​caso​ ​típico​ ​de​ ​esta​ ​tabla​ ​son​ ​las​ ​tablas​ ​de​ ​líneas​ ​de​ ​detalle​ ​de​ ​las​ ​tablas​ ​de​ ​documentos​ ​de​ ​compra​ ​y
ventas.

La​ ​ventaja​ ​de​ ​declarar​ ​esta​ ​tabla​ ​es​ ​que​ ​el​ ​índice​ ​​ID​​ ​está​ ​formado​ ​por​ ​el​ ​código​ ​de​ ​la​ ​maestra​ ​y​ ​el​ ​código
numérico​ ​de​ ​la​ ​submaestra​ ​que​ ​se​ ​numera​ ​automáticamente.​ ​Si​ ​el​ ​código​ ​de​ ​la​ ​submaestra​ ​no​ ​es
numérico​ ​entonces​ ​perdemos​ ​esta​ ​ventaja​ ​y​ ​no​ ​merece​ ​la​ ​pena​ ​hacerla​ ​submaestra.

El​ ​otro​ ​motivo​ ​por​ ​el​ ​que​ ​se​ ​desaconseja​ ​su​ ​uso​ ​es​ ​que​ ​si​ ​esta​ ​tabla​ ​va​ ​a​ ​tener​ ​plurales​ ​es​ ​mejor​ ​usarla​ ​de
tipo​ ​maestra​ ​ya​ ​que​ ​de​ ​lo​ ​contrario​ ​nos​ ​encontraremos​ ​que​ ​para​ ​apuntar​ ​a​ ​un​ ​registro​ ​desde​ ​otra​ ​tabla
plural​ ​vamos​ ​a​ ​necesitar​ ​mínimo​ ​2​ ​campos​ ​(maestro​ ​y​ ​código).

Por​ ​el​ ​mismo​ ​motivo​ ​tampoco​ ​es​ ​cómodo​ ​crear​ ​tablas​ ​submaestras​ ​de​ ​múltiples​ ​niveles​ ​ya​ ​que​ ​cada​ ​vez
el​ ​índice​ ​ID​ ​tiene​ ​más​ ​partes​ ​y​ ​al​ ​relacionar​ ​otras​ ​tablas​ ​con​ ​esta​ ​submaestra​ ​se​ ​necesitan​ ​tantos​ ​campos
como​ ​partes​ ​componen​ ​el​ ​índice,​ ​en​ ​cambio​ ​con​ ​una​ ​tabla​ ​maestra​ ​sabemos​ ​que​ ​podemos​ ​resolver​ ​la

51

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

relación​ ​con​ ​un​ ​solo​ ​campo.

Campos

A​ ​continuación​ ​se​ ​detalla​ ​en​ ​una​ ​tabla​ ​el​ ​uso​ ​recomendado​ ​de​ ​campos​ ​de​ ​tipo​ ​alfabético.

Tipo​ ​de​ ​campo Ejemplo​ ​de​ ​uso

Alfa​ ​256 Almacenar​ ​campos​ ​alfanuméricos​ ​permitiendo​ ​todo​ ​tipo​ ​de​ ​caracteres​ ​y​ ​longitud
específica.

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​aunque​ ​soporta​ ​hasta​ ​65.535​ ​caracteres​ ​no​ ​tiene
mucho​ ​sentido​ ​guardar​ ​tanta​ ​información​ ​en​ ​un​ ​campo​ ​de​ ​este​ ​tipo,​ ​siendo
recomendable​ ​usar​ ​campos​ ​objeto​ ​texto​ ​o​ ​texto​ ​enriquecido​ ​en​ ​su​ ​lugar.

Alfa​ ​128 Para​ ​guardar​ ​datos​ ​alfanuméricos​ ​como​ ​nombres,​ ​direcciones,​ ​etc.

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​no​ ​soporta​ ​todos​ ​los​ ​caracteres​ ​ASCII​ ​por​ ​lo​ ​que
debemos​ ​evitar​ ​usarlo​ ​para​ ​almacenar​ ​URLs​ ​o​ ​eMails​ ​por​ ​ejemplo,​ ​en​ ​ese​ ​caso​ ​es
mejor​ ​usar​ ​el​ ​Alfa​ ​256

Alfa​ ​64 Para​ ​guardar​ ​datos​ ​alfanuméricos​ ​en​ ​mayúsculas​ ​independientemente​ ​de​ ​como
los​ ​escriba​ ​el​ ​usuario.

Se​ ​usa​ ​para​ ​guardar​ ​textos​ ​en​ ​mayúsculas,​ ​referencias​ ​o​ ​códigos​ ​que​ ​usan
caracteres​ ​no​ ​soportados​ ​en​ ​los​ ​Alfa​ ​40.

Alfa​ ​40 Muy​ ​recomendable​ ​para​ ​códigos​ ​alfanuméricos,​ ​referencias,​ ​código​ ​de​ ​barras,​ ​etc.

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​el​ ​tamaño​ ​mínimo​ ​siempre​ ​debe​ ​ser​ ​múltiplo​ ​de​ ​2​ ​y
que​ ​su​ ​contenido​ ​que​ ​se​ ​puede​ ​grabar​ ​en​ ​el​ ​campo​ ​será​ ​múltiplo​ ​de​ ​3,​ ​es​ ​decir,
que​ ​si​ ​quiero​ ​poner​ ​en​ ​un​ ​formulario​ ​un​ ​campo​ ​para​ ​guardar​ ​4​ ​caracteres​ ​este​ ​tipo
de​ ​campo​ ​puede​ ​no​ ​ser​ ​óptimo.

Alfa​ ​Latin1 Cuando​ ​el​ ​contenido​ ​del​ ​campo​ ​debamos​ ​enviarlo​ ​a​ ​un​ ​servicio​ ​o​ ​software​ ​externo
que​ ​tenga​ ​ese​ ​requisito​ ​de​ ​codificación.

También​ ​podemos​ ​resolver​ ​la​ ​codificación​ ​en​ ​el​ ​momento​ ​de​ ​la​ ​exportación,​ ​por
este​ ​motivo​ ​no​ ​es​ ​habitual​ ​usar​ ​este​ ​tipo​ ​de​ ​campo.

Alfa​ ​UTF-16 Cuando​ ​tengamos​ ​que​ ​incluir​ ​contenido​ ​en​ ​idiomas​ ​de​ ​doble​ ​byte​ ​como​ ​el​ ​Chino.

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​estos​ ​campos​ ​ocupan​ ​el​ ​doble​ ​que​ ​uno​ ​normal,​ ​por​ ​lo
tanto​ ​no​ ​debemos​ ​poner​ ​los​ ​campos​ ​de​ ​las​ ​tablas​ ​de​ ​este​ ​tipo​ ​si​ ​creemos​ ​que​ ​en
el​ ​futuro​ ​instalaremos​ ​una​ ​versión​ ​para​ ​usuarios​ ​en​ ​Chino​ ​ya​ ​que​ ​estaremos
perjudicando​ ​el​ ​tamaño​ ​de​ ​la​ ​base​ ​de​ ​datos​ ​y​ ​el​ ​rendimiento​ ​por​ ​algo​ ​que​ ​puede
no​ ​llegar​ ​a​ ​concretarse​ ​nunca.​ ​Es​ ​preferible​ ​que​ ​llegado​ ​el​ ​momento​ ​hagamos​ ​el
cambio​ ​de​ ​tipo​ ​de​ ​los​ ​campos​ ​ya​ ​que​ ​la​ ​refactorización​ ​automática​ ​hará​ ​que​ ​el
cambio​ ​no​ ​produzca​ ​ninguna​ ​pérdida​ ​de​ ​datos.

¿Son​ ​todos​ ​los​ ​campos​ ​Alfa​ ​igual​ ​de​ ​rápidos?
No,​ ​realmente​ ​el​ ​campo​ ​​Alfa​ ​256​​ ​es​ ​el​ ​más​ ​rápido​ ​en​ ​su​ ​uso​ ​debido​ ​a​ ​que​ ​su​ ​contenido​ ​se​ ​procesa​ ​de

52

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

forma​ ​directa,​ ​sin​ ​embargo​ ​los​ ​​Alfa​ ​128​,​ ​​Alfa​ ​64​​ ​y​ ​​Alfa​ ​40​​ ​utilizan​ ​datos​ ​comprimidos​ ​a​ ​nivel​ ​de​ ​bits.
Realmente​ ​el​ ​proceso​ ​de​ ​compresión​ ​y​ ​descompresión​ ​es​ ​muy​ ​rápido​ ​pero​ ​a​ ​la​ ​hora​ ​de​ ​realizar​ ​miles​ ​o
millones​ ​de​ ​operaciones​ ​con​ ​cadenas​ ​es​ ​preferible​ ​el​ ​uso​ ​de​ ​campos​ ​Alfa​ ​256.

¿Puedo​ ​usar​ ​campos​ ​de​ ​tipo​ ​tiempo​ ​para​ ​acumular​ ​horas,​ ​minutos​ ​y​ ​segundos?
Sí,​ ​esa​ ​es​ ​su​ ​función,​ ​pero​ ​debemos​ ​tener​ ​en​ ​cuenta​ ​que​ ​el​ ​campo​ ​admite​ ​hasta​ ​un​ ​máximo​ ​de​ ​24​ ​horas
(un​ ​día),​ ​por​ ​lo​ ​tanto​ ​si​ ​queremos​ ​almacenar​ ​tiempo​ ​superior​ ​a​ ​un​ ​día​ ​debemos​ ​utilizar​ ​un​ ​campo​ ​numérico
donde​ ​guardemos​ ​los​ ​segundos,​ ​minutos​ ​u​ ​horas​ ​según​ ​el​ ​caso​ ​y​ ​luego​ ​utilizar​ ​campos​ ​para​ ​convertir
esos​ ​tiempos​ ​a​ ​horas:minutos:segundos.

¿Cuándo​ ​debo​ ​utilizar​ ​campos​ ​de​ ​tipo​ ​fórmula?
Los​ ​campos​ ​fórmula​ ​son​ ​muy​ ​recomendables​ ​para​ ​ahorrar​ ​espacio​ ​en​ ​el​ ​tamaño​ ​de​ ​registro,​ ​ya​ ​que​ ​su
ocupación​ ​en​ ​disco​ ​es​ ​cero.

Debemos​ ​tener​ ​en​ ​cuenta​ ​que​ ​la​ ​fórmula​ ​se​ ​calcula​ ​allí​ ​donde​ ​se​ ​solicita​ ​el​ ​valor​ ​del​ ​campo,​ ​por​ ​ese​ ​motivo
si​ ​vemos​ ​que​ ​queremos​ ​hacer​ ​un​ ​uso​ ​intensivo​ ​de​ ​ese​ ​campo​ ​en​ ​rejillas​ ​o​ ​si​ ​hay​ ​muchas​ ​dependencia​ ​de
contenidos​ ​iniciales​ ​como​ ​puede​ ​ocurrir​ ​en​ ​tablas​ ​de​ ​estadísticas​ ​con​ ​acumulados​ ​mensuales​ ​(saldos,
existencias,​ ​estadísticas,​ ​etc.)​ ​podemos​ ​optar​ ​por​ ​utilizar​ ​campos​ ​con​ ​persistencia​ ​en​ ​disco,​ ​que​ ​aunque
ocupan​ ​espacio​ ​y​ ​aumentan​ ​el​ ​tamaño​ ​del​ ​registro,​ ​evitan​ ​el​ ​recálculo​ ​del​ ​dato​ ​ya​ ​que​ ​se​ ​calcula​ ​una​ ​única
vez​ ​a​ ​través​ ​o​ ​bien​ ​del​ ​contenido​ ​inicial,​ ​de​ ​algún​ ​evento​ ​de​ ​tabla​ ​o​ ​directamente​ ​en​ ​código​ ​del​ ​objeto
visual,​ ​y​ ​nos​ ​ahorra​ ​volver​ ​a​ ​calcular​ ​en​ ​el​ ​momento​ ​en​ ​que​ ​se​ ​muestra​ ​el​ ​datos​ ​en​ ​un​ ​informe,​ ​rejilla,
formulario,​ ​etc.

¿Cuándo​ ​es​ ​recomendable​ ​usar​ ​campos​ ​objeto​ ​texto?
Los​ ​campos​ ​objeto​ ​tienen​ ​una​ ​ocupación​ ​en​ ​el​ ​registro​ ​de​ ​8​ ​bytes​ ​en​ ​los​ ​que​ ​se​ ​almacena​ ​la​ ​referencia​ ​al
primer​ ​bloque​ ​de​ ​512​ ​bytes​ ​del​ ​contenedor​ ​de​ ​objetos.​ ​En​ ​el​ ​contender​ ​todos​ ​los​ ​contenidos​ ​sean​ ​texto,
imágenes​ ​o​ ​ficheros​ ​se​ ​almacenan​ ​en​ ​celdas​ ​de​ ​512​ ​bytes,​ ​cuando​ ​un​ ​objeto​ ​ocupa​ ​más​ ​de​ ​512​ ​bytes​ ​va
ocupando​ ​más​ ​celdas​ ​de​ ​este​ ​tamaño​ ​hasta​ ​almacenarse​ ​en​ ​su​ ​totalidad,​ ​todas​ ​las​ ​celdas​ ​de​ ​un​ ​objeto
quedan​ ​relacionadas​ ​e​ ​indexadas​ ​para​ ​un​ ​rápido​ ​acceso.

Por​ ​lo​ ​tanto​ ​tenemos​ ​que​ ​tener​ ​claro​ ​que​ ​si​ ​vamos​ ​a​ ​almacenar​ ​un​ ​texto​ ​con​ ​un​ ​tamaño​ ​fijo​ ​menor​ ​de​ ​512
bytes,​ ​a​ ​priori​ ​podríamos​ ​pensar​ ​que​ ​un​ ​campo​ ​alfabético​ ​será​ ​más​ ​recomendable,​ ​sin​ ​embargo​ ​eso
dependerá​ ​del​ ​número​ ​de​ ​registros​ ​que​ ​estén​ ​ocupados.​ ​Si​ ​por​ ​ejemplo​ ​creamos​ ​un​ ​campo​ ​de​ ​100​ ​bytes
que​ ​solo​ ​es​ ​ocupado​ ​en​ ​el​ ​10%​ ​de​ ​los​ ​registros​ ​de​ ​una​ ​tabla​ ​que​ ​tiene​ ​1.000.000​ ​de​ ​registros,​ ​estaríamos
ocupando​ ​100​ ​MB​ ​de​ ​disco​ ​de​ ​los​ ​que​ ​el​ ​90%​ ​estaría​ ​vacío.​ ​Sin​ ​embargo,​ ​si​ ​usamos​ ​un​ ​campo​ ​objeto
tendríamos​ ​8​ ​MB​ ​de​ ​ocupación​ ​de​ ​los​ ​8​ ​bytes​ ​del​ ​campo​ ​más​ ​100.000​ ​celdas​ ​de​ ​512​ ​bytes​ ​lo​ ​que​ ​daría​ ​un
total​ ​de​ ​520​ ​MB,​ ​es​ ​decir,​ ​la​ ​mitad​ ​de​ ​ocupación​ ​en​ ​disco​ ​más​ ​la​ ​ventaja​ ​de​ ​que​ ​el​ ​registros​ ​es​ ​92​ ​bytes
más​ ​ligero.​ ​Aunque​ ​no​ ​supone​ ​ningún​ ​inconveniente​ ​tenemos​ ​que​ ​tener​ ​claro​ ​que​ ​la​ ​carga​ ​de​ ​objetos​ ​se
realiza​ ​en​ ​hilos​ ​secundarios​ ​ya​ ​que​ ​no​ ​viaja​ ​con​ ​la​ ​información​ ​del​ ​registro.

Otra​ ​característica​ ​muy​ ​interesante​ ​de​ ​la​ ​base​ ​de​ ​datos​ ​de​ ​Velneo​ ​es​ ​que​ ​puedes​ ​indexar​ ​por​ ​trozos​ ​y/o
palabras​ ​los​ ​campos​ ​objeto​ ​texto​ ​y​ ​objeto​ ​texto​ ​enriquecido​ ​(en​ ​este​ ​caso​ ​la​ ​base​ ​de​ ​datos​ ​se​ ​encarga​ ​de
eliminar​ ​las​ ​etiquetas​ ​HTML​ ​de​ ​la​ ​indexación).​ ​Esta​ ​es​ ​una​ ​característica​ ​muy​ ​potente,​ ​aunque​ ​hay​ ​que
gestionarla​ ​bien​ ​ya​ ​que​ ​la​ ​indexación​ ​de​ ​textos​ ​largos​ ​pueden​ ​generar​ ​millones​ ​de​ ​entradas​ ​en​ ​el​ ​índice​ ​de
los​ ​contenedores.

Existen​ ​diferentes​ ​circunstancias​ ​en​ ​las​ ​que​ ​el​ ​uso​ ​de​ ​objeto​ ​texto​ ​nos​ ​va​ ​a​ ​ayudar​ ​a​ ​optimizar​ ​la
ocupación​ ​de​ ​espacio​ ​en​ ​la​ ​base​ ​de​ ​datos,​ ​y​ ​por​ ​lo​ ​tanto​ ​el​ ​rendimiento​ ​en​ ​ejecución​ ​de​ ​nuestra​ ​aplicación.

53

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

● Cuando​ ​la​ ​ocupación​ ​de​ ​registros​ ​es​ ​baja,​ ​por​ ​ejemplo​ ​<10%​ ​para​ ​tamaños​ ​de​ ​>100​ ​bytes.
● Para​ ​evitar​ ​crear​ ​campos​ ​alfabéticos​ ​muy​ ​grandes​ ​(>100​ ​bytes).
● Para​ ​almacenar​ ​contenido​ ​variable​ ​que​ ​puede​ ​ser​ ​de​ ​miles​ ​de​ ​KB​ ​o​ ​cientos​ ​de​ ​MB.
● Para​ ​evitar​ ​la​ ​creación​ ​de​ ​campos​ ​adicionales​ ​configurables.​ ​Se​ ​explica​ ​más​ ​abajo.
● Para​ ​almacenar​ ​contenido​ ​HTML​ ​usa​ ​el​ ​objeto​ ​texto​ ​enriquecido.

Si​ ​tengo​ ​miles​ ​de​ ​objetos​ ​dibujo​ ​o​ ​texto​ ​¿Los​ ​guardo​ ​en​ ​la​ ​base​ ​de​ ​datos?
Aunque​ ​los​ ​objetos​ ​texto​ ​son​ ​muy​ ​cómodos​ ​de​ ​usar​ ​si​ ​lo​ ​que​ ​queremos​ ​almacenar​ ​es​ ​una​ ​gran​ ​cantidad
de​ ​información​ ​como​ ​puede​ ​ser​ ​el​ ​caso​ ​de​ ​un​ ​gestor​ ​de​ ​documental​ ​en​ ​el​ ​que​ ​podremos​ ​almacenar
cientos​ ​de​ ​miles​ ​de​ ​documentos​ ​de​ ​gran​ ​tamaño,​ ​el​ ​mejor​ ​planteamiento​ ​puede​ ​ser​ ​no​ ​utilizar​ ​campos
objeto​ ​y​ ​en​ ​su​ ​lugar​ ​almacenar​ ​de​ ​forma​ ​externa​ ​los​ ​ficheros​ ​guardando​ ​en​ ​un​ ​campo​ ​del​ ​registro​ ​la​ ​senda
o​ ​URL​ ​de​ ​acceso​ ​a​ ​dicho​ ​fichero.

Hacerlo​ ​de​ ​forma​ ​externa​ ​nos​ ​permite​ ​mayor​ ​flexibilidad​ ​a​ ​la​ ​hora​ ​de​ ​almacenar​ ​los​ ​ficheros​ ​clasificados​ ​y
organizados​ ​en​ ​disco​ ​por​ ​carpetas,​ ​a​ ​la​ ​vez​ ​que​ ​minimiza​ ​el​ ​tamaño​ ​de​ ​nuestra​ ​base​ ​de​ ​datos​ ​lo​ ​que
facilita​ ​su​ ​gestión​ ​y​ ​reindexación.

El​ ​único​ ​hándicap​ ​en​ ​este​ ​caso​ ​es​ ​que​ ​perdemos​ ​la​ ​posibilidad​ ​de​ ​indexar​ ​por​ ​trozos​ ​o​ ​palabras​ ​los​ ​textos,
aunque​ ​se​ ​pueden​ ​usar​ ​alternativas​ ​como​ ​almacenar​ ​solo​ ​palabras​ ​claves​ ​en​ ​un​ ​objeto​ ​texto​ ​del​ ​registro
que​ ​nos​ ​facilite​ ​la​ ​localización​ ​del​ ​fichero​ ​sin​ ​engordar​ ​nuestra​ ​base​ ​de​ ​datos​ ​con​ ​su​ ​contenido.

Guarda​ ​el​ ​contenido​ ​de​ ​diferentes​ ​campos​ ​en​ ​un​ ​solo​ ​campo​ ​objeto​ ​texto
En​ ​ocasiones​ ​hay​ ​aplicaciones​ ​muy​ ​configurables​ ​que​ ​permiten​ ​a​ ​los​ ​clientes​ ​finales​ ​o​ ​usuarios​ ​añadir
campos​ ​personalizados​ ​en​ ​algunas​ ​tablas.​ ​La​ ​base​ ​de​ ​Velneo​ ​es​ ​estática​ ​en​ ​cuanto​ ​a​ ​su​ ​definición,​ ​es
decir,​ ​no​ ​podemos​ ​cambiar​ ​en​ ​tiempo​ ​de​ ​ejecución​ ​la​ ​estructura​ ​de​ ​una​ ​tabla​ ​añadiendo​ ​nuevos​ ​campos.

Para​ ​poder​ ​simular​ ​los​ ​campos​ ​personalizables​ ​se​ ​podría​ ​pensar​ ​en​ ​dejar​ ​creados,​ ​por​ ​ejemplo​ ​3​ ​campos
alfabéticos​ ​de​ ​50​ ​caracteres,​ ​3​ ​campos​ ​numéricos​ ​y​ ​3​ ​campos​ ​de​ ​tipo​ ​fecha.​ ​Además​ ​de​ ​poco​ ​práctico​ ​ya
que​ ​en​ ​un​ ​momento​ ​dado​ ​el​ ​usuario​ ​podría​ ​necesitar​ ​4​ ​campos​ ​de​ ​un​ ​determinado​ ​tipo​ ​y​ ​ninguno​ ​del​ ​resto
supone​ ​un​ ​gran​ ​desperdicio​ ​de​ ​espacio​ ​en​ ​disco​ ​con​ ​múltiples​ ​campos​ ​vacíos.

En​ ​su​ ​lugar​ ​de​ ​puede​ ​optar​ ​por​ ​usar​ ​un​ ​campo​ ​objeto​ ​texto​ ​en​ ​el​ ​que​ ​almacenemos​ ​los​ ​contenidos​ ​de
todos​ ​los​ ​campos​ ​con​ ​algún​ ​tipo​ ​de​ ​separador,​ ​por​ ​ejemplo:

● Formato​ ​XML.​ ​<nombre​ ​campo>Contenido​ ​del​ ​campo</nombre​ ​campo>
● Formato​ ​JSON.​ ​{​ ​“nombre​ ​campo”​ ​:​ ​“contenido​ ​campo”​ ​}
● Formato​ ​CSV.​ ​En​ ​la​ ​primer​ ​línea​ ​los​ ​nombres​ ​de​ ​campo​ ​“nombre​ ​campo​ ​1”|”nombre​ ​campo

2”|”nombre​ ​campo​ ​3”​ ​y​ ​en​ ​la​ ​2ª​ ​línea​ ​los​ ​datos​ ​“contenido​ ​campo​ ​1”|”contenido​ ​campo
2”|”contenido​ ​campo​ ​3”

● Salto​ ​de​ ​línea.​ ​El​ ​nombre​ ​del​ ​campo​ ​estaría​ ​configurado​ ​en​ ​un​ ​campo​ ​objeto​ ​texto​ ​a​ ​nivel​ ​de
aplicación​ ​o​ ​empresa​ ​y​ ​el​ ​contenido​ ​de​ ​los​ ​se​ ​guarda​ ​cada​ ​uno​ ​en​ ​una​ ​línea​ ​añadiendo​ ​un​ ​salto​ ​de
línea​ ​después​ ​del​ ​dato.

De​ ​esta​ ​forma​ ​podemos​ ​almacenar​ ​múltiples​ ​valores​ ​en​ ​un​ ​único​ ​campo​ ​objeto​ ​texto.​ ​Evidentemente​ ​hay
un​ ​trabajo​ ​de​ ​programación​ ​adicional​ ​para​ ​poder​ ​visualizar​ ​esta​ ​información​ ​de​ ​forma​ ​dinámica​ ​en​ ​un
formulario​ ​o​ ​rejilla​ ​(usando​ ​una​ ​tabla​ ​en​ ​memoria,​ ​por​ ​ejemplo).​ ​Además,​ ​la​ ​indexación​ ​por​ ​los​ ​valores​ ​de

54

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

estos​ ​campos​ ​de​ ​forma​ ​individual​ ​resulta​ ​más​ ​compleja.

Contenidos​ ​iniciales

Los​ ​contenidos​ ​iniciales​ ​de​ ​los​ ​campos​ ​se​ ​evalúan​ ​cuando​ ​damos​ ​el​ ​alta​ ​de​ ​un​ ​registro​ ​y​ ​cuando​ ​hacemos
modificaciones​ ​de​ ​los​ ​datos​ ​del​ ​registro.​ ​Es​ ​un​ ​gran​ ​recurso​ ​para​ ​el​ ​programador​ ​y​ ​debemos​ ​usarlo​ ​con
cuidado​ ​para​ ​no​ ​abusar​ ​de​ ​sus​ ​bondades​ ​perjudicando​ ​el​ ​rendimiento​ ​de​ ​nuestra​ ​aplicación.

Minimiza​ ​las​ ​dependencias​ ​en​ ​contenidos​ ​iniciales
Una​ ​de​ ​las​ ​grandes​ ​ventajas​ ​es​ ​que​ ​el​ ​valor​ ​de​ ​un​ ​campo​ ​se​ ​calcula​ ​automáticamente​ ​en​ ​base​ ​al​ ​de​ ​otros
campos.​ ​Esta​ ​característica​ ​es​ ​buena​ ​siempre​ ​y​ ​cuando​ ​no​ ​abusemos​ ​de​ ​ella,​ ​es​ ​decir,​ ​si​ ​tenemos​ ​una
tabla​ ​con​ ​cientos​ ​de​ ​campos​ ​y​ ​creamos​ ​unos​ ​contenidos​ ​iniciales​ ​muy​ ​dependientes​ ​entre​ ​sí​ ​de​ ​tal​ ​forma
que​ ​cualquier​ ​cambio​ ​en​ ​un​ ​campo​ ​produzca​ ​el​ ​recálculo​ ​de​ ​muchas​ ​decenas​ ​o​ ​incluso​ ​un​ ​centenar​ ​de
contenidos​ ​iniciales​ ​en​ ​otros​ ​campos​ ​podemos​ ​detectar​ ​lentitud​ ​en​ ​nuestra​ ​aplicación.​ ​Para​ ​evitar​ ​estos
casos​ ​excepcionales​ ​podemos​ ​renunciar​ ​al​ ​contenido​ ​inicial​ ​y​ ​hacer​ ​los​ ​cálculos​ ​bien​ ​en​ ​el​ ​objeto​ ​visual​ ​en
1º​ ​plano​ ​o​ ​también​ ​en​ ​los​ ​triggers​ ​anterior​ ​al​ ​alta​ ​o​ ​modificación,​ ​evitando​ ​que​ ​se​ ​recalculen​ ​de​ ​forma
constante​ ​y​ ​en​ ​su​ ​lugar​ ​conseguir​ ​que​ ​los​ ​cálculos​ ​solo​ ​se​ ​realicen​ ​una​ ​vez.

Cuidado​ ​con​ ​los​ ​contenidos​ ​iniciales​ ​que​ ​dependen​ ​de​ ​punteros​ ​a​ ​hermanos​ ​contiguos
Cuando​ ​usamos​ ​hermanos​ ​contiguos​ ​en​ ​los​ ​contenidos​ ​iniciales​ ​debemos​ ​tener​ ​la​ ​precaución​ ​de​ ​evitar
cálculos​ ​en​ ​cascada​ ​incontrolados.​ ​En​ ​principio​ ​esto​ ​no​ ​debería​ ​de​ ​producirse​ ​con​ ​contenidos​ ​iniciales​ ​ya
que​ ​solo​ ​afectan​ ​al​ ​registro​ ​en​ ​curso,​ ​sin​ ​embargo​ ​sí​ ​que​ ​tenemos​ ​que​ ​tenerlo​ ​en​ ​cuenta​ ​si​ ​en​ ​lugar​ ​de​ ​un
campo​ ​con​ ​persistencia​ ​en​ ​disco​ ​y​ ​contenido​ ​inicial​ ​usamos​ ​un​ ​campo​ ​fórmula​ ​que​ ​utiliza​ ​un​ ​campo
obtenido​ ​a​ ​través​ ​de​ ​un​ ​puntero​ ​a​ ​un​ ​hermano​ ​contiguo,​ ​ya​ ​que​ ​en​ ​ese​ ​caso​ ​si​ ​el​ ​campo​ ​del​ ​registro
apuntado​ ​a​ ​su​ ​vez​ ​es​ ​una​ ​fórmula​ ​que​ ​tira​ ​del​ ​hermano​ ​contiguo​ ​lo​ ​que​ ​estamos​ ​provocando​ ​es​ ​que​ ​el
cálculo​ ​de​ ​un​ ​campo​ ​realiza​ ​lecturas​ ​y​ ​cálculos​ ​en​ ​un​ ​número​ ​de​ ​registros​ ​incontrolado​ ​que​ ​puede​ ​dar
lugar​ ​a​ ​cálculos​ ​de​ ​miles​ ​de​ ​registros.

Para​ ​evitar​ ​estas​ ​circunstancias​ ​es​ ​preferible​ ​usar​ ​campos​ ​con​ ​persistencia​ ​en​ ​disco​ ​y​ ​contenidos​ ​inciales
o​ ​cuyo​ ​valor​ ​se​ ​calcula​ ​una​ ​única​ ​vez​ ​en​ ​un​ ​evento​ ​de​ ​tabla​ ​o​ ​proceso.​ ​Aunque​ ​tenemos​ ​mayor​ ​ocupación
en​ ​disco​ ​a​ ​cambio​ ​obtener​ ​un​ ​mejor​ ​rendimiento​ ​de​ ​la​ ​aplicación.

Evita​ ​el​ ​uso​ ​de​ ​funciones​ ​largas​ ​o​ ​complejas​ ​en​ ​contenidos​ ​inciales
Si​ ​tenemos​ ​una​ ​función​ ​que​ ​realiza​ ​un​ ​cálculo​ ​complejo​ ​que,​ ​por​ ​ejemplo​ ​requiere​ ​la​ ​lectura​ ​de​ ​múltiples
registros,​ ​y​ ​usamos​ ​esta​ ​función​ ​en​ ​contenidos​ ​iniciales​ ​de​ ​campos​ ​debemos​ ​revisar​ ​que​ ​no​ ​afecta​ ​al
rendimiento.​ ​Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​los​ ​contenidos​ ​iniciales​ ​aunque​ ​están​ ​definidos​ ​en​ ​la​ ​tabla​ ​no
siempre​ ​se​ ​ejecutan​ ​en​ ​el​ ​servidor,​ ​al​ ​dar​ ​el​ ​alta​ ​desde​ ​un​ ​formulario​ ​se​ ​ejecutan​ ​en​ ​1º​ ​plano,​ ​y​ ​en​ ​el​ ​caso
comentado​ ​puede​ ​producir​ ​lentitud​ ​en​ ​la​ ​apertura​ ​del​ ​formulario​ ​o​ ​la​ ​aparición​ ​del​ ​icono​ ​de​ ​espera​ ​cuando
se​ ​esté​ ​ejecutando​ ​el​ ​cálculo​ ​del​ ​valor​ ​del​ ​campo.

Si​ ​además,​ ​a​ ​la​ ​función​ ​se​ ​le​ ​pasan​ ​como​ ​parámetros​ ​valores​ ​de​ ​otros​ ​campos,​ ​podemos​ ​encontrarnos
con​ ​que​ ​la​ ​función​ ​se​ ​ejecuta​ ​múltiples​ ​veces​ ​al​ ​estar​ ​en​ ​un​ ​contenido​ ​inicial,​ ​para​ ​evitar​ ​esta​ ​circunstancia
debemos​ ​evitar​ ​su​ ​uso​ ​en​ ​un​ ​contenido​ ​inicial​ ​moviendo​ ​la​ ​ejecución​ ​de​ ​la​ ​función​ ​a​ ​los​ ​eventos​ ​de​ ​tabla
anterior​ ​a​ ​alta​ ​y​ ​modificación,​ ​o​ ​si​ ​la​ ​aplicación​ ​lo​ ​permite​ ​directamente​ ​en​ ​el​ ​objeto​ ​visual​ ​como​ ​puede​ ​un
formulario​ ​de​ ​edición.

55

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Evita​ ​siempre​ ​que​ ​puedas​ ​el​ ​uso​ ​de​ ​contenido​ ​inicial​ ​JavaScript
En​ ​los​ ​contenidos​ ​iniciales​ ​de​ ​los​ ​campos​ ​de​ ​una​ ​tabla​ ​podemos​ ​utilizar​ ​fórmulas​ ​de​ ​código​ ​Velneo​ ​y
también​ ​fórmulas​ ​JavaScript.​ ​Debemos​ ​saber​ ​que​ ​cada​ ​vez​ ​que​ ​se​ ​ejecuta​ ​una​ ​fórmula​ ​JavaScript​ ​es
necesario​ ​lanzar​ ​un​ ​motor​ ​de​ ​ejecución​ ​y​ ​alimentarlo​ ​con​ ​las​ ​clases​ ​generales​ ​para​ ​que​ ​disponga​ ​de​ ​la
información​ ​del​ ​entorno,​ ​aunque​ ​esta​ ​operación​ ​es​ ​rápida​ ​en​ ​términos​ ​generales​ ​es​ ​lo​ ​suficientemente
lenta​ ​como​ ​para​ ​notar​ ​retardo​ ​respecto​ ​al​ ​cálculo​ ​de​ ​fórmulas​ ​de​ ​código​ ​Velneo,​ ​por​ ​lo​ ​tanto​ ​debemos​ ​usar
fórmulas​ ​JavaScript​ ​con​ ​la​ ​precaución​ ​de​ ​saber​ ​que​ ​solo​ ​se​ ​calculará​ ​una​ ​vez.

Si​ ​tenemos​ ​varios​ ​campos​ ​que​ ​necesitamos​ ​calcular​ ​con​ ​una​ ​fórmula​ ​JavaScript​ ​podemos​ ​optimizarlo​ ​no
usando​ ​la​ ​fórmula​ ​en​ ​el​ ​contenido​ ​inicial​ ​y​ ​en​ ​su​ ​lugar​ ​ejecutarla​ ​en​ ​los​ ​eventos​ ​de​ ​tabla​ ​anterior​ ​al​ ​alta​ ​y
modificación​ ​lanzando​ ​un​ ​proceso​ ​de​ ​código​ ​JavaScript​ ​de​ ​origen​ ​ficha.​ ​De​ ​esta​ ​forma​ ​aseguramos​ ​que​ ​se
ejecute​ ​una​ ​única​ ​vez​ ​y​ ​además​ ​podemos​ ​calcular​ ​el​ ​valor​ ​de​ ​múltiples​ ​campos​ ​en​ ​el​ ​mismo​ ​script​ ​con​ ​lo
que​ ​optimizar​ ​todos​ ​los​ ​cálculos​ ​en​ ​una​ ​única​ ​ejecución​ ​del​ ​motor​ ​de​ ​JavaScript.

En​ ​las​ ​importaciones​ ​de​ ​millones​ ​de​ ​registros​ ​optimiza​ ​el​ ​cálculo​ ​de​ ​contenidos​ ​iniciales
Cuando​ ​estamos​ ​importando​ ​miles​ ​o​ ​incluso​ ​millones​ ​de​ ​registros​ ​en​ ​las​ ​tabla​ ​Velneo​ ​es​ ​habitual​ ​que​ ​los
datos​ ​que​ ​estamos​ ​importando​ ​no​ ​requieran​ ​que​ ​se​ ​disparen​ ​los​ ​contenidos​ ​iniciales​ ​ya​ ​que​ ​nos​ ​llegan
calculados.

Con​ ​el​ ​fin​ ​de​ ​optimizar​ ​la​ ​importación,​ ​debemos​ ​sustituir​ ​el​ ​uso​ ​del​ ​comando​ ​de​ ​instrucción​ ​“Modificar
campo”​ ​por​ ​el​ ​comando​ ​de​ ​instrucción​ ​“Modificar​ ​campo​ ​solamente”​ ​que​ ​se​ ​encarga​ ​de​ ​modificar​ ​el​ ​valor
del​ ​campo​ ​pero​ ​evitando​ ​que​ ​se​ ​disparen​ ​los​ ​contenidos​ ​iniciales.​ ​Si​ ​en​ ​algún​ ​momento​ ​necesitamos​ ​que
se​ ​ejecuten​ ​los​ ​contenidos​ ​iniciales​ ​podremos​ ​forzarlo​ ​ejecutando​ ​el​ ​comando​ ​de​ ​instrucción​ ​“Calcula
campos​ ​dependientes”,​ ​este​ ​comando​ ​se​ ​puede​ ​ejecutar​ ​múltiples​ ​veces​ ​antes​ ​de​ ​grabar​ ​el​ ​registro.

Índices

Crea​ ​siempre​ ​los​ ​índices​ ​de​ ​campos​ ​punteros​ ​a​ ​maestros
La​ ​base​ ​de​ ​datos​ ​Velneo​ ​tiene​ ​algunos​ ​automatismos​ ​realmente​ ​interesantes,​ ​uno​ ​de​ ​ellos​ ​es​ ​la​ ​creación
automática​ ​de​ ​los​ ​enlaces​ ​plurales,​ ​este​ ​subobjeto​ ​es​ ​totalmente​ ​dinámico​ ​y​ ​se​ ​crea​ ​en​ ​tiempo​ ​de
ejecución​ ​en​ ​base​ ​a​ ​los​ ​índices​ ​existentes​ ​en​ ​las​ ​tablas,​ ​de​ ​tal​ ​forma​ ​que​ ​si​ ​las​ ​primeras​ ​partes​ ​de​ ​un
índice​ ​coinciden​ ​con​ ​el​ ​índice​ ​​ID​​ ​de​ ​una​ ​tabla​ ​maestra​ ​se​ ​crea​ ​automáticamente​ ​el​ ​subobjeto​ ​enlace​ ​plural.
Este​ ​subobjeto​ ​permite​ ​navegar​ ​por​ ​la​ ​información​ ​desde​ ​la​ ​tabla​ ​maestra​ ​a​ ​su​ ​plural.

Además​ ​de​ ​la​ ​navegación​ ​desde​ ​el​ ​maestro​ ​a​ ​su​ ​plural​ ​este​ ​subobjeto​ ​permite​ ​el​ ​funcionamiento​ ​a​ ​otro
automatismo​ ​de​ ​la​ ​base​ ​de​ ​datos,​ ​el​ ​despliegue​ ​del​ ​cambio​ ​de​ ​código​ ​del​ ​maestro​ ​a​ ​sus​ ​plurales.​ ​Es​ ​decir,
si​ ​un​ ​maestro​ ​tiene​ ​el​ ​código​ ​100​ ​y​ ​por​ ​algún​ ​motivo​ ​necesitamos​ ​ponerle​ ​el​ ​código​ ​200,​ ​al​ ​hacerlo​ ​la​ ​base
de​ ​datos​ ​de​ ​Velneo​ ​se​ ​encarga​ ​de​ ​cambiar​ ​el​ ​código​ ​en​ ​todas​ ​las​ ​tablas​ ​plurales​ ​que​ ​apuntan​ ​a​ ​este
registro​ ​maestro.

Para​ ​que​ ​el​ ​cambio​ ​de​ ​código​ ​funcione​ ​bien​ ​y​ ​no​ ​nos​ ​llevemos​ ​ninguna​ ​sorpresa​ ​es​ ​necesario​ ​que​ ​existe
un​ ​enlace​ ​plural.​ ​Por​ ​este​ ​motivo​ ​es​ ​fundamental​ ​que​ ​creemos​ ​siempre​ ​un​ ​índice​ ​en​ ​la​ ​tabla​ ​plural​ ​a​ ​través
del​ ​campo​ ​puntero​ ​a​ ​maestro,​ ​en​ ​el​ ​caso​ ​de​ ​las​ ​tablas​ ​submaestras​ ​el​ ​índice​ ​tiene​ ​varias​ ​partes​ ​pero​ ​el
funcionamiento​ ​es​ ​similar.​ ​Este​ ​índice​ ​se​ ​crea​ ​automáticamente​ ​cuando​ ​creamos​ ​el​ ​campo​ ​puntero​ ​a
maestro​ ​con​ ​las​ ​herramientas​ ​del​ ​editor​ ​de​ ​esquemas​ ​o​ ​con​ ​el​ ​selector​ ​de​ ​tabla​ ​maestro​ ​en​ ​el​ ​editor​ ​de
tabla.​ ​Si​ ​añadimos​ ​el​ ​campo​ ​manualmente​ ​o​ ​copiando​ ​de​ ​otro​ ​campo​ ​debemos​ ​tener​ ​la​ ​precaución​ ​de

56

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

crear​ ​el​ ​índice.

Debemos​ ​tener​ ​en​ ​cuenta​ ​que​ ​en​ ​muchas​ ​ocasiones​ ​tenemos​ ​índices​ ​condicionados,​ ​es​ ​decir​ ​que​ ​indexan
a​ ​través​ ​del​ ​campo​ ​puntero​ ​a​ ​maestro​ ​pero​ ​solo​ ​indexan​ ​algunos​ ​registros,​ ​los​ ​que​ ​cumplen​ ​la​ ​condición.
Esto​ ​debemos​ ​tenerlo​ ​presente​ ​ya​ ​que​ ​en​ ​ese​ ​caso​ ​el​ ​cambio​ ​de​ ​código​ ​solo​ ​se​ ​aplicaría​ ​en​ ​los​ ​registros
que​ ​cumplen​ ​la​ ​condición,​ ​pero​ ​nos​ ​quedarían​ ​otros​ ​registros​ ​con​ ​el​ ​código​ ​antiguo​ ​lo​ ​que​ ​supondría​ ​un
gran​ ​problema.​ ​Por​ ​ejemplo,​ ​si​ ​tenemos​ ​la​ ​familia​ ​A100,​ ​y​ ​en​ ​la​ ​tabla​ ​de​ ​artículos​ ​solo​ ​tenemos​ ​un​ ​índice
por​ ​familia​ ​que​ ​indexa​ ​los​ ​que​ ​tienen​ ​existencia.​ ​Si​ ​cambiamos​ ​el​ ​código​ ​de​ ​la​ ​familia​ ​a​ ​B200,​ ​solo​ ​se
cambiaría​ ​en​ ​los​ ​artículos​ ​con​ ​existencia,​ ​quedando​ ​erróneamente​ ​otros​ ​artículos​ ​con​ ​el​ ​código​ ​de​ ​familia
A100,​ ​que​ ​en​ ​caso​ ​de​ ​ser​ ​reutilizado​ ​supondría​ ​tener​ ​una​ ​base​ ​de​ ​datos​ ​errónea.​ ​Por​ ​este​ ​motivo,​ ​si
tenemos​ ​que​ ​crear​ ​índices​ ​condicionados​ ​es​ ​conveniente​ ​también​ ​tener​ ​un​ ​índice​ ​al​ ​maestro​ ​sin​ ​ninguna
condición,​ ​es​ ​decir​ ​que​ ​indexe​ ​todos​ ​los​ ​registros.

Evita​ ​el​ ​cambio​ ​de​ ​código​ ​de​ ​maestro​ ​siempre​ ​que​ ​sea​ ​posible
Es​ ​cierto​ ​que​ ​no​ ​es​ ​habitual​ ​cambiar​ ​los​ ​códigos​ ​​ID​​ ​de​ ​las​ ​tablas​ ​maestras,​ ​y​ ​en​ ​muchos​ ​casos​ ​ese​ ​dato​ ​ni
se​ ​visualiza​ ​en​ ​pantalla​ ​ni​ ​se​ ​deja​ ​cambiar​ ​al​ ​usuario,​ ​pero​ ​en​ ​una​ ​base​ ​de​ ​datos​ ​existen​ ​muchas​ ​tablas​ ​con
circunstancias​ ​“especiales”,​ ​por​ ​ejemplo​ ​tablas​ ​cuyos​ ​registros​ ​nacen​ ​de​ ​la​ ​importación​ ​de​ ​información​ ​de
otro​ ​sistema​ ​o​ ​que​ ​son​ ​claves​ ​que​ ​cambian​ ​con​ ​el​ ​tiempo.

Lo​ ​más​ ​recomendable​ ​en​ ​Velneo​ ​es​ ​crear​ ​siempre​ ​la​ ​tabla​ ​maestra​ ​con​ ​el​ ​campo​ ​​ID​​ ​y​ ​añadir​ ​otros​ ​campos
de​ ​códigos​ ​externos​ ​que​ ​pueden​ ​cambiar,​ ​pero​ ​dejando​ ​siempre​ ​como​ ​enlace​ ​entre​ ​el​ ​maestro​ ​y​ ​sus
plurales​ ​a​ ​través​ ​del​ ​​ID​​ ​que​ ​genera​ ​Velneo.​ ​Esto​ ​es​ ​lo​ ​más​ ​habitual​ ​y​ ​recomendable,​ ​porque​ ​aunque​ ​los
artículos​ ​tengan​ ​referencias​ ​o​ ​códigos​ ​de​ ​barras​ ​y​ ​los​ ​clientes​ ​tengan​ ​un​ ​​CIF​​ ​o​ ​un​ ​​DNI​​ ​siempre​ ​será​ ​más
óptimo​ ​indexar​ ​y​ ​apuntar​ ​a​ ​tablas​ ​del​ ​campo​ ​​ID​​ ​numérico​ ​que​ ​tendrá​ ​un​ ​máximo​ ​de​ ​4​ ​bytes.​ ​De​ ​esta​ ​forma
ganamos​ ​espacio​ ​y​ ​rendimiento.

Si​ ​en​ ​alguna​ ​tabla,​ ​por​ ​ejemplo​ ​de​ ​tipo​ ​arbolada,​ ​necesitamos​ ​usar​ ​códigos​ ​que​ ​nos​ ​vienen​ ​dados​ ​por
terceros,​ ​debemos​ ​tener​ ​en​ ​cuenta​ ​lo​ ​comentado​ ​en​ ​el​ ​punto​ ​anterior​ ​sobre​ ​tener​ ​siempre​ ​índices​ ​en​ ​las
tablas​ ​plurales​ ​sin​ ​condicionar​ ​que​ ​nos​ ​aseguren​ ​que​ ​cualquier​ ​cambio​ ​en​ ​el​ ​código​ ​del​ ​maestro​ ​se
aplicará​ ​en​ ​todos​ ​sus​ ​plurales.

Evita​ ​los​ ​índices​ ​“duplicados”​ ​que​ ​tienen​ ​la​ ​parte​ ​izquierda​ ​común
En​ ​tablas​ ​grandes​ ​con​ ​muchos​ ​campos​ ​y​ ​muchos​ ​índices​ ​hay​ ​que​ ​tener​ ​especial​ ​precaución​ ​con​ ​los
índices​ ​que​ ​se​ ​crean​ ​ya​ ​que​ ​es​ ​muy​ ​fácil​ ​crear​ ​índices​ ​“duplicados”​ ​si​ ​no​ ​tomamos​ ​medidas​ ​para​ ​evitarlo.

¿Qué​ ​es​ ​un​ ​índice​ ​duplicado?​ ​Obviamente​ ​el​ ​primer​ ​caso​ ​de​ ​índices​ ​duplicados​ ​es​ ​aquél​ ​en​ ​que​ ​ambos
índices​ ​son​ ​exactamente​ ​iguales,​ ​pero​ ​también​ ​podemos​ ​considerar​ ​que​ ​un​ ​índice​ ​está​ ​duplicado​ ​cuando
sus​ ​partes​ ​coinciden​ ​con​ ​las​ ​primeras​ ​partes​ ​de​ ​otro​ ​índice.​ ​Veamos​ ​un​ ​ejemplo.

57

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

​ ​​ ​​ ​

Es​ ​muy​ ​habitual​ ​que​ ​a​ ​medida​ ​que​ ​va​ ​creciendo​ ​el​ ​proyecto​ ​se​ ​vayan​ ​creando​ ​nuevos​ ​índices,​ ​en​ ​el​ ​ejemplo
anterior​ ​es​ ​posible​ ​que​ ​inicialmente​ ​se​ ​haya​ ​creado​ ​el​ ​índice​ ​​ART_EMP​​ ​con​ ​esas​ ​2​ ​partes​ ​y​ ​posteriormente
se​ ​creó​ ​el​ ​índice​ ​​ART_EMP_ALM​​ ​con​ ​7​ ​partes,​ ​si​ ​el​ ​responsable​ ​de​ ​base​ ​de​ ​la​ ​base​ ​de​ ​datos​ ​no​ ​tiene
cuidado​ ​quedarían​ ​los​ ​2​ ​índices​ ​creados​ ​cuando​ ​realmente​ ​no​ ​es​ ​necesario​ ​ya​ ​que​ ​podemos​ ​utilizar​ ​el
índice​ ​​ART_EMP_ALM​​ ​buscando​ ​por​ ​parte​ ​izquierda​ ​resolviendo​ ​solo​ ​el​ ​artículo​ ​y​ ​empresa,​ ​obteniendo​ ​de
esta​ ​forma​ ​el​ ​mismo​ ​resultado​ ​que​ ​si​ ​usamos​ ​el​ ​índice​ ​​ART_EMP​.​ ​Cuando​ ​encontremos​ ​un​ ​caso​ ​de​ ​estos
nos​ ​quedaremos​ ​con​ ​el​ ​índices​ ​de​ ​más​ ​partes​ ​y​ ​refactorizaremos​ ​los​ ​objetos​ ​que​ ​usaban​ ​​ART_EMP​​ ​para
que​ ​usen​ ​​ART_EMP_ALM​​ ​por​ ​parte​ ​izquierda​ ​o​ ​incluso​ ​también​ ​se​ ​puede​ ​usar​ ​entre​ ​límites.

La​ ​mejor​ ​forma​ ​de​ ​evitar​ ​tener​ ​índices​ ​duplicados​ ​es​ ​poner​ ​buenos​ ​identificadores​ ​a​ ​los​ ​índices​ ​para​ ​que
expresen​ ​bien​ ​sus​ ​partes​ ​y​ ​organizar​ ​los​ ​índices​ ​de​ ​las​ ​tablas​ ​por​ ​orden​ ​alfabético.​ ​De​ ​esta​ ​forma
detectamos​ ​fácilmente​ ​las​ ​duplicidades​ ​de​ ​un​ ​vistazo,​ ​como​ ​se​ ​puede​ ​apreciar​ ​en​ ​la​ ​siguiente​ ​captura.

Es​ ​evidente​ ​que​ ​ver​ ​un​ ​índice​ ​​ART_EMP​​ ​al​ ​lado​ ​de​ ​otro​ ​que​ ​se​ ​llamada​ ​​ART_EMP_ALM​​ ​es​ ​un​ ​claro
indicativo​ ​de​ ​que​ ​puede​ ​haber​ ​una​ ​duplicidad,​ ​aunque​ ​podría​ ​darse​ ​la​ ​circunstancia​ ​de​ ​que​ ​tengan
diferente​ ​condición​ ​de​ ​indexación,​ ​algo​ ​que​ ​debería​ ​reflejarse​ ​en​ ​el​ ​identificador.

¿Cuándo​ ​usar​ ​índices​ ​condicionados?
Los​ ​índices​ ​condicionados​ ​son​ ​una​ ​gran​ ​herramienta​ ​para​ ​el​ ​programador.​ ​En​ ​principio​ ​su​ ​uso​ ​es
totalmente​ ​aconsejable​ ​ya​ ​que​ ​con​ ​ellos​ ​mejoramos​ ​el​ ​rendimiento​ ​de​ ​nuestras​ ​aplicaciones​ ​al​ ​evitar
búsquedas​ ​más​ ​complejas​ ​o​ ​filtrados.

58

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Es​ ​cierto​ ​que​ ​el​ ​tiempo​ ​de​ ​indexación​ ​de​ ​un​ ​índice​ ​condicionado​ ​es​ ​aproximadamente​ ​un​ ​30%​ ​superior​ ​a
un​ ​índice​ ​sin​ ​condicionar,​ ​al​ ​tener​ ​que​ ​evaluarse​ ​la​ ​fórmula​ ​de​ ​la​ ​condición,​ ​pero​ ​este​ ​tiempo​ ​además​ ​de
que​ ​solo​ ​nos​ ​penaliza​ ​una​ ​única​ ​vez​ ​en​ ​el​ ​alta,​ ​baja​ ​o​ ​modificación,​ ​es​ ​muy​ ​pequeño,​ ​por​ ​lo​ ​que​ ​podemos
asumirlo​ ​sin​ ​ningún​ ​problema​ ​dadas​ ​las​ ​ventajas​ ​que​ ​nos​ ​aporta.

Siempre​ ​que​ ​tengamos​ ​estados​ ​de​ ​registros,​ ​los​ ​índices​ ​condicionados​ ​son​ ​un​ ​gran​ ​aliado​ ​ya​ ​que
podemos​ ​obtener​ ​de​ ​forma​ ​directa​ ​los​ ​registros​ ​adecuados​ ​ordenados​ ​en​ ​función​ ​de​ ​las​ ​partes​ ​definidas.
Sin​ ​duda​ ​alguna​ ​una​ ​herramienta​ ​a​ ​tener​ ​en​ ​cuenta​ ​y​ ​usar​ ​de​ ​forma​ ​constante.

Hay​ ​dos​ ​casos​ ​en​ ​los​ ​que​ ​no​ ​merece​ ​la​ ​pena​ ​crear​ ​índices​ ​condicionados:

1. Si​ ​un​ ​índice​ ​condicionado​ ​solo​ ​se​ ​usa​ ​una​ ​vez​ ​al​ ​año​ ​para​ ​un​ ​informe​ ​concreto,​ ​no​ ​tiene​ ​mucho
sentido​ ​crear​ ​en​ ​la​ ​tabla​ ​un​ ​índice​ ​que​ ​estará​ ​infrautilizado​ ​para​ ​ganar​ ​unos​ ​segundos​ ​en​ ​un
informe​ ​que​ ​apenas​ ​se​ ​utiliza.

2. Si​ ​tengo​ ​decenas​ ​de​ ​estados,​ ​en​ ​lugar​ ​de​ ​crear​ ​decenas​ ​de​ ​índices​ ​condicionados​ ​tiene​ ​más
sentido​ ​crear​ ​un​ ​índice​ ​por​ ​el​ ​campo​ ​estado​ ​y​ ​buscar​ ​de​ ​forma​ ​directa​ ​un​ ​estado.

Los​ ​índices​ ​acepta​ ​repetidas​ ​ocupan​ ​4​ ​bytes​ ​más
El​ ​tamaño​ ​de​ ​un​ ​índice​ ​viene​ ​dado​ ​por​ ​la​ ​suma​ ​de​ ​tamaño​ ​de​ ​las​ ​partes​ ​que​ ​lo​ ​componen,​ ​sin​ ​embargo​ ​en
un​ ​índice​ ​de​ ​tipo​ ​acepta​ ​repetidas​ ​debemos​ ​tener​ ​en​ ​cuenta​ ​que​ ​Velneo​ ​añade​ ​4​ ​bytes​ ​al​ ​tamaño​ ​del
índice.​ ​Esto​ ​lo​ ​hace​ ​porque​ ​aunque​ ​acepte​ ​claves​ ​repetidas​ ​la​ ​base​ ​de​ ​datos​ ​necesita​ ​poder​ ​apuntar​ ​a​ ​cada
registro​ ​de​ ​forma​ ​única.​ ​Al​ ​añadir​ ​4​ ​bytes​ ​Velneo​ ​permite​ ​hasta​ ​4.000​ ​millones​ ​de​ ​repeticiones​ ​de​ ​una
clave.​ ​Es​ ​decir​ ​que​ ​aunque​ ​para​ ​nosotros​ ​a​ ​nivel​ ​de​ ​programación​ ​se​ ​aceptan​ ​claves​ ​duplicadas,
internamente​ ​se​ ​comporta​ ​como​ ​si​ ​fuese​ ​un​ ​índice​ ​de​ ​clave​ ​única,​ ​aunque​ ​nosotros​ ​como​ ​programadores
nunca​ ​veremos​ ​los​ ​4​ ​bytes​ ​adicionales​ ​que​ ​componen​ ​el​ ​índice.

Los​ ​índices​ ​de​ ​clave​ ​única​ ​son​ ​más​ ​rápidos
A​ ​la​ ​hora​ ​de​ ​regenerar​ ​una​ ​tabla​ ​o​ ​indexar​ ​alguno​ ​de​ ​sus​ ​índices​ ​podemos​ ​observar​ ​que​ ​los​ ​índices​ ​de
clave​ ​única​ ​son​ ​más​ ​rápidos​ ​en​ ​estas​ ​operaciones​ ​que​ ​los​ ​de​ ​acepta​ ​repetidas,​ ​lógicamente​ ​en​ ​este
proceso​ ​influye​ ​lo​ ​comentado​ ​en​ ​el​ ​apartado​ ​anterior​ ​del​ ​control​ ​de​ ​claves​ ​repetidas.​ ​Además,​ ​cuanta
menos​ ​repetición​ ​de​ ​claves​ ​tengamos​ ​más​ ​rápido​ ​se​ ​indexa​ ​un​ ​índice.

En​ ​un​ ​índice​ ​acepta​ ​repetidas​ ​el​ ​orden​ ​de​ ​los​ ​registros​ ​vendrá​ ​dado​ ​por​ ​el​ ​orden​ ​de​ ​creación​ ​de​ ​dicho
registro,​ ​este​ ​comportamiento​ ​puede​ ​ser​ ​deseado​ ​o​ ​no.​ ​En​ ​caso​ ​de​ ​que​ ​queramos​ ​garantizar​ ​un​ ​orden
específico​ ​conviene​ ​añadir​ ​más​ ​partes​ ​a​ ​nuestro​ ​índice,​ ​intentando​ ​siempre​ ​en​ ​la​ ​medida​ ​de​ ​los​ ​posible
crear​ ​el​ ​índice​ ​con​ ​el​ ​menor​ ​tamaño​ ​posible.​ ​Por​ ​ejemplo,​ ​en​ ​la​ ​tabla​ ​de​ ​facturas​ ​podemos​ ​crear​ ​un​ ​índice
por​ ​el​ ​cliente​ ​de​ ​tipo​ ​acepta​ ​repetidas,​ ​pero​ ​puede​ ​ser​ ​mucho​ ​más​ ​interesante​ ​crearlo​ ​con​ ​las​ ​partes​ ​cliente
y​ ​fecha,​ ​de​ ​esta​ ​forma​ ​cuando​ ​carguemos​ ​plurales​ ​de​ ​facturas​ ​del​ ​cliente​ ​nos​ ​aparecerán​ ​ordenadas​ ​por
fecha,​ ​si​ ​además​ ​en​ ​el​ ​índice​ ​añadimos​ ​el​ ​​ID​ ​ ​o​ ​el​ ​número​ ​de​ ​la​ ​factura​ ​y​ ​podemos​ ​poner​ ​el​ ​índice​ ​de​ ​tipo
clave​ ​única,​ ​además​ ​de​ ​ser​ ​un​ ​índice​ ​más​ ​rápido​ ​para​ ​la​ ​reindexación​ ​conseguiremos​ ​que​ ​en​ ​caso​ ​de​ ​que
un​ ​cliente​ ​tenga​ ​más​ ​de​ ​una​ ​factura​ ​en​ ​la​ ​misma​ ​fecha​ ​salgan​ ​ordenadas​ ​por​ ​número.

En​ ​definitiva,​ ​que​ ​es​ ​más​ ​recomendable​ ​tener​ ​índices​ ​de​ ​clave​ ​única​ ​para​ ​lo​ ​cual​ ​en​ ​las​ ​tablas​ ​maestras
siempre​ ​podremos​ ​conseguirlo​ ​de​ ​forma​ ​sencilla​ ​añadiendo​ ​el​ ​​ID​​ ​como​ ​última​ ​parte​ ​del​ ​índice.

Usa​ ​la​ ​longitud​ ​y​ ​conversión​ ​de​ ​la​ ​parte​ ​del​ ​índice​ ​para​ ​reducir​ ​el​ ​tamaño
Cuando​ ​tenemos​ ​que​ ​indexar​ ​un​ ​campo​ ​alfabético​ ​con​ ​un​ ​tamaño​ ​grande​ ​(>50​ ​caracteres)​ ​puede​ ​ser​ ​muy

59

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

buena​ ​opción​ ​aplicar​ ​una​ ​indexación​ ​parcial.​ ​Salvo​ ​que​ ​sea​ ​necesario​ ​indexar​ ​de​ ​clave​ ​única,​ ​podemos
utilizar​ ​la​ ​propiedad​ ​longitud​ ​para​ ​reducir​ ​el​ ​tamaño​ ​del​ ​índice.

En​ ​el​ ​ejemplo​ ​anterior​ ​vemos​ ​como​ ​al​ ​especificar​ ​la​ ​propiedad​ ​longitud​ ​en​ ​el​ ​campo​ ​​NAME​​ ​nos​ ​permite
reducir​ ​el​ ​tamaño​ ​del​ ​índice​ ​a​ ​12​ ​bytes.​ ​De​ ​esta​ ​forma​ ​solo​ ​se​ ​indexarán​ ​los​ ​primeros​ ​caracteres​ ​del
campo,​ ​algo​ ​que​ ​en​ ​la​ ​mayoría​ ​de​ ​las​ ​ocasiones​ ​no​ ​supone​ ​ningún​ ​problema​ ​ya​ ​que​ ​no​ ​es​ ​habitual​ ​que
coincidan,​ ​y​ ​en​ ​el​ ​caso​ ​de​ ​que​ ​coincidan​ ​estarían​ ​juntos​ ​en​ ​la​ ​lista.

Por​ ​otro​ ​lado​ ​la​ ​propiedad​ ​conversión​ ​nos​ ​permite​ ​indicar​ ​que​ ​aunque​ ​el​ ​campo​ ​sea​ ​de​ ​tipo​ ​​Alfa​ ​256​,​ ​a​ ​la
hora​ ​de​ ​indexarlo,​ ​en​ ​el​ ​índice​ ​se​ ​indexe​ ​como​ ​​Alfa​ ​128​,​ ​​Alfa​ ​64​​ ​o​ ​​Alfa​ ​40​​ ​consiguiendo​ ​de​ ​esta​ ​forma​ ​que
se​ ​puedan​ ​encontrar​ ​los​ ​registros​ ​tanto​ ​en​ ​minúsculas​ ​como​ ​en​ ​mayúsculas​ ​y​ ​sobre​ ​todo​ ​que​ ​con​ ​una
longitud​ ​de​ ​12​ ​bytes​ ​en​ ​el​ ​índice​ ​estemos​ ​indexando​ ​por​ ​los​ ​18​ ​primeros​ ​caracteres​ ​del​ ​campo​ ​​NAME​.

Índices​ ​de​ ​trozos​ ​y​ ​palabras
Sin​ ​duda​ ​son​ ​los​ ​índices​ ​más​ ​potentes​ ​de​ ​la​ ​base​ ​de​ ​datos​ ​de​ ​Velneo,​ ​su​ ​gran​ ​virtud​ ​es​ ​la​ ​potencia​ ​de
búsqueda​ ​su​ ​mayor​ ​problema​ ​es​ ​el​ ​tamaño​ ​en​ ​disco​ ​y​ ​la​ ​reindexación.​ ​Por​ ​este​ ​motivo​ ​hay​ ​que​ ​equilibrar
su​ ​uso.

En​ ​tablas​ ​con​ ​pocos​ ​registros​ ​no​ ​hay​ ​ningún​ ​problema​ ​generar​ ​ambos​ ​índices,​ ​pero​ ​en​ ​tablas​ ​con​ ​millones
de​ ​registros​ ​tenemos​ ​que​ ​tratar​ ​de​ ​evitar​ ​que​ ​el​ ​índice​ ​nos​ ​cause​ ​problemas​ ​de​ ​rendimiento,​ ​en​ ​algunos
casos​ ​puede​ ​ser​ ​conveniente​ ​generar​ ​solo​ ​el​ ​índice​ ​por​ ​palabras​ ​ya​ ​que​ ​es​ ​mucho​ ​más​ ​reducido​ ​que​ ​el​ ​de
trozos,​ ​pensemos​ ​que​ ​la​ ​palabra​ ​“Amortiguador”​ ​generaría​ ​una​ ​única​ ​entrada​ ​en​ ​el​ ​índice​ ​de​ ​palabras,​ ​pero
10​ ​entradas​ ​(Amo,​ ​mor,​ ​ort,​ ​rti,​ ​tig,​ ​igu,​ ​gua,​ ​uad,​ ​ado,​ ​dor)​ ​en​ ​el​ ​índice​ ​por​ ​trozos,​ ​lo​ ​que​ ​supone​ ​una​ ​gran
ocupación​ ​en​ ​disco​ ​y​ ​un​ ​mayor​ ​tiempo​ ​de​ ​reindexación.

Debemos​ ​evitar​ ​siempre​ ​crear,​ ​siempre​ ​que​ ​sea​ ​posible,​ ​varios​ ​índices​ ​de​ ​trozos​ ​y​ ​palabras.​ ​Es​ ​decir,​ ​no
tiene​ ​sentido​ ​crear​ ​el​ ​índice​ ​por​ ​palabras​ ​para​ ​el​ ​campo​ ​nombre​ ​y​ ​otro​ ​índice​ ​por​ ​palabras​ ​para​ ​el​ ​campo
dirección,​ ​en​ ​ese​ ​caso​ ​debemos​ ​crear​ ​un​ ​único​ ​índice​ ​por​ ​palabras​ ​añadiendo​ ​ambos​ ​campos​ ​como​ ​partes
del​ ​mismo​ ​índice,​ ​además​ ​de​ ​tener​ ​menos​ ​índices​ ​lo​ ​que​ ​mejora​ ​el​ ​tiempo​ ​de​ ​reindexación​ ​ya​ ​que​ ​solo​ ​se
lee​ ​el​ ​registro​ ​una​ ​vez​ ​para​ ​reindexar​ ​ambos​ ​campos​ ​sino​ ​que​ ​además​ ​nos​ ​permite​ ​que​ ​el​ ​usuario​ ​busque
por​ ​cualquier​ ​de​ ​los​ ​dos​ ​datos​ ​a​ ​la​ ​vez​ ​sin​ ​tener​ ​que​ ​pedirle​ ​dos​ ​datos​ ​en​ ​pantalla​ ​o​ ​tener​ ​que​ ​hacer​ ​2
búsquedas​ ​y​ ​cruzarlas.

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​podemos​ ​incluir​ ​en​ ​los​ ​índices​ ​por​ ​trozos​ ​y​ ​palabras​ ​campos​ ​de​ ​tipo​ ​objeto
texto​ ​y​ ​objeto​ ​texto​ ​enriquecido,​ ​en​ ​este​ ​último​ ​caso​ ​Velneo​ ​se​ ​encarga​ ​de​ ​quitar​ ​las​ ​etiquetas​ ​HTML​ ​e
indexar​ ​solo​ ​el​ ​contenido​ ​del​ ​campo.​ ​Debemos​ ​ser​ ​precavidos​ ​a​ ​la​ ​hora​ ​de​ ​indexar​ ​este​ ​tipo​ ​de​ ​campos​ ​por
trozos​ ​o​ ​palabras​ ​ya​ ​que​ ​el​ ​número​ ​de​ ​entradas​ ​en​ ​el​ ​índice​ ​puede​ ​ser​ ​gigantesco​ ​dependiente​ ​de​ ​lo​ ​que
grabemos​ ​en​ ​dichos​ ​campos​ ​ya​ ​que​ ​debemos​ ​recordar​ ​que​ ​son​ ​de​ ​longitud​ ​variable​ ​y​ ​si​ ​el​ ​usuario​ ​quiere
puede​ ​meter​ ​en​ ​un​ ​campo​ ​el​ ​contenido​ ​de​ ​un​ ​libro.​ ​Además​ ​de​ ​la​ ​ocupación​ ​en​ ​disco,​ ​dar​ ​de​ ​alta​ ​un

60

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

registro​ ​que​ ​tenga​ ​que​ ​indexar​ ​un​ ​gran​ ​volumen​ ​de​ ​palabras​ ​o​ ​trozos​ ​de​ ​palabras​ ​puede​ ​suponer​ ​un
retardo​ ​que​ ​produzca​ ​una​ ​mala​ ​experiencia​ ​para​ ​el​ ​usuario.

Índices​ ​complejos
Este​ ​tipo​ ​de​ ​índice​ ​como​ ​su​ ​nombre​ ​indica​ ​es​ ​un​ ​objeto​ ​sencillo​ ​de​ ​definir​ ​pero​ ​con​ ​una​ ​funcionalidad
realmente​ ​compleja​ ​que​ ​resuelve​ ​casos​ ​que​ ​requieren​ ​mucha​ ​programación​ ​o​ ​que​ ​gracias​ ​al​ ​uso​ ​de​ ​este
tipo​ ​de​ ​índice​ ​se​ ​consiguen​ ​unos​ ​rendimientos​ ​que​ ​no​ ​podemos​ ​alcanzar​ ​mediante​ ​programación.

Por​ ​cada​ ​índice​ ​complejo​ ​crea​ ​código​ ​para​ ​regenerarlo​ ​la​ ​primera​ ​vez​ ​que​ ​se​ ​instancia
Es​ ​muy​ ​importante​ ​tener​ ​en​ ​cuenta​ ​que​ ​aunque​ ​los​ ​índices​ ​complejos​ ​se​ ​reindexan​ ​automáticamente​ ​al
cambiar​ ​las​ ​partes​ ​tienen​ ​el​ ​hándicap​ ​de​ ​que​ ​no​ ​se​ ​indexan​ ​la​ ​primera​ ​vez​ ​que​ ​se​ ​crean,​ ​algo​ ​que​ ​debemos
tener​ ​en​ ​cuenta​ ​si​ ​creamos​ ​un​ ​índice​ ​complejo​ ​sobre​ ​tablas​ ​que​ ​contienen​ ​datos.​ ​​ ​Una​ ​buena​ ​práctica
consiste​ ​en​ ​crear​ ​el​ ​código​ ​necesario​ ​para​ ​forzar​ ​su​ ​indexación​ ​inicial​ ​cuando​ ​instalamos​ ​la​ ​versión​ ​de
nuestra​ ​aplicación.

¿Cuándo​ ​debo​ ​usar​ ​un​ ​índice​ ​complejo?
Poder​ ​indexar​ ​registros​ ​de​ ​una​ ​tabla​ ​por​ ​datos​ ​que​ ​se​ ​encuentran​ ​almacenados​ ​en​ ​otras​ ​tablas​ ​nos​ ​ayuda
a​ ​reducir​ ​el​ ​tamaño​ ​de​ ​las​ ​tablas​ ​al​ ​no​ ​tener​ ​que​ ​duplicar​ ​información​ ​redundante​ ​para​ ​poder​ ​indexarla,​ ​nos
evita​ ​programación​ ​adicional​ ​para​ ​reflejar​ ​los​ ​cambios​ ​de​ ​datos​ ​en​ ​la​ ​tabla​ ​donde​ ​queremos​ ​indexar,​ ​sin
embargo,​ ​también​ ​tiene​ ​como​ ​pro​ ​que​ ​regenerar​ ​índices​ ​complejos​ ​de​ ​tablas​ ​grandes​ ​va​ ​a​ ​requerir​ ​tiempo
y​ ​puede​ ​que​ ​mucho​ ​espacio​ ​en​ ​disco,​ ​en​ ​función​ ​del​ ​tamaño​ ​de​ ​las​ ​partes​ ​a​ ​indexar.

Ejemplos​ ​típicos​ ​de​ ​índices​ ​complejos​ ​son:

● Indexar​ ​contactos​ ​por​ ​sus​ ​direcciones,​ ​teléfonos,​ ​emails.
● Indexar​ ​ventas​ ​por​ ​las​ ​palabras​ ​del​ ​artículo.
● Indexar​ ​facturas​ ​por​ ​los​ ​trozos​ ​del​ ​nombre​ ​del​ ​cliente.

Por​ ​este​ ​motivo​ ​hay​ ​que​ ​tener​ ​precaución​ ​a​ ​la​ ​hora​ ​de​ ​generar​ ​índices​ ​complejos​ ​de​ ​tablas​ ​con​ ​millones​ ​de
registros​ ​con​ ​un​ ​índice​ ​por​ ​trozos​ ​o​ ​palabras​ ​ya​ ​que​ ​estaríamos​ ​creando​ ​un​ ​índice​ ​enorme​ ​en​ ​tamaño​ ​y
con​ ​un​ ​tiempo​ ​de​ ​reindexación​ ​muy​ ​elevado.​ ​Esto​ ​no​ ​quiere​ ​decir​ ​que​ ​no​ ​podamos​ ​crear​ ​un​ ​índice
complejo​ ​por​ ​trozos​ ​o​ ​palabras​ ​del​ ​nombre​ ​del​ ​artículo​ ​indexando​ ​las​ ​líneas​ ​de​ ​venta,​ ​pero​ ​sí​ ​debemos
tener​ ​en​ ​cuenta​ ​el​ ​tamaño​ ​y​ ​la​ ​ocupación​ ​para​ ​decidir​ ​si​ ​por​ ​ejemplo​ ​solo​ ​lo​ ​generamos​ ​por​ ​palabras​ ​que
será​ ​mucho​ ​más​ ​pequeño​ ​que​ ​si​ ​lo​ ​hacemos​ ​por​ ​trozos.

61

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Actualizaciones
Es​ ​la​ ​característica​ ​estrella​ ​de​ ​las​ ​tablas​ ​Velneo.​ ​Poder​ ​actualizar​ ​valores​ ​en​ ​tablas​ ​maestras​ ​desde​ ​sus
plurales​ ​sin​ ​programar​ ​código​ ​es​ ​muy​ ​atractivo,​ ​sin​ ​duda,​ ​pero​ ​todavía​ ​lo​ ​es​ ​​ ​más​ ​la​ ​rapidez​ ​de​ ​los​ ​cálculos
que​ ​al​ ​estar​ ​automatizados​ ​en​ ​el​ ​propio​ ​sistema​ ​Velneo​ ​son​ ​más​ ​rápidos​ ​que​ ​si​ ​los​ ​programamos
nosotros​ ​en​ ​procesos​ ​o​ ​funciones​ ​y​ ​además​ ​la​ ​fiabilidad​ ​de​ ​que​ ​funcionan​ ​bien​ ​en​ ​todos​ ​los​ ​casos,​ ​aunque
en​ ​la​ ​definición​ ​solo​ ​le​ ​digamos​ ​lo​ ​que​ ​tienen​ ​que​ ​hacer​ ​en​ ​el​ ​alta.

Utiliza​ ​actualizaciones​ ​siempre​ ​que​ ​puedas
Dadas​ ​sus​ ​virtudes​ ​no​ ​hay​ ​duda,​ ​siempre​ ​que​ ​puedas​ ​hacer​ ​una​ ​actualización​ ​no​ ​escribas​ ​código​ ​en​ ​los
eventos​ ​de​ ​tabla.​ ​Es​ ​más,​ ​deberías​ ​pensarlo​ ​al​ ​revés,​ ​siempre​ ​que​ ​vayas​ ​a​ ​escribir​ ​código​ ​en​ ​un​ ​evento​ ​de
tabla​ ​piensa​ ​si​ ​puedes​ ​hacerlo​ ​mediante​ ​una​ ​actualización.

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​a​ ​la​ ​facilidad​ ​de​ ​configuración​ ​de​ ​una​ ​actualización​ ​se​ ​le​ ​une​ ​la​ ​posibilidad​ ​de
condicionarla​ ​lo​ ​que​ ​facilita​ ​la​ ​realización​ ​de​ ​cálculos​ ​más​ ​complejos.​ ​Aplicando​ ​estos​ ​criterios,​ ​en
muchos​ ​casos​ ​es​ ​preferible​ ​hacer​ ​actualizaciones​ ​en​ ​tablas​ ​maestras​ ​acumulando​ ​líneas​ ​totales,​ ​líneas
servidas,​ ​etc.​ ​que​ ​nos​ ​permiten​ ​declarar​ ​en​ ​la​ ​tabla​ ​maestra​ ​un​ ​campo​ ​que​ ​nos​ ​indique​ ​si​ ​ya​ ​está​ ​servido​ ​o
no​ ​en​ ​base​ ​a​ ​los​ ​valores​ ​de​ ​los​ ​campos​ ​acumulados​ ​en​ ​vez​ ​de​ ​escribir​ ​código​ ​en​ ​ningún​ ​evento​ ​de​ ​tabla.

En​ ​las​ ​actualizaciones​ ​por​ ​valor​ ​absoluto​ ​hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​las​ ​bajas
Es​ ​habitual​ ​usar​ ​actualizaciones​ ​para​ ​almacenar​ ​en​ ​una​ ​tabla​ ​maestra​ ​los​ ​últimos​ ​valores,​ ​por​ ​ejemplo​ ​en
el​ ​cliente​ ​podríamos​ ​guardar​ ​la​ ​fecha​ ​del​ ​último​ ​pedido.​ ​En​ ​estos​ ​casos​ ​tanto​ ​en​ ​alta​ ​como​ ​en
modificación​ ​no​ ​hay​ ​problema​ ​a​ ​la​ ​hora​ ​de​ ​condicionar​ ​la​ ​actualización​ ​y​ ​dejar​ ​el​ ​valor​ ​correcto​ ​en​ ​el
maestro,​ ​sin​ ​embargo​ ​cuando​ ​damos​ ​la​ ​baja​ ​de​ ​un​ ​pedido​ ​que​ ​era​ ​el​ ​último​ ​de​ ​un​ ​cliente​ ​nos
encontraremos​ ​de​ ​que​ ​no​ ​podemos​ ​actualizar​ ​la​ ​fecha​ ​del​ ​último​ ​pedido,​ ​salvo​ ​que​ ​tengamos​ ​un​ ​puntero​ ​a
hermano​ ​contiguo​ ​o​ ​un​ ​singular​ ​de​ ​plural​ ​que​ ​nos​ ​facilite​ ​obtener​ ​dicho​ ​dato.​ ​Este​ ​caso​ ​debemos​ ​tenerlo
en​ ​cuenta​ ​para​ ​en​ ​el​ ​trigger​ ​posterior​ ​a​ ​la​ ​baja​ ​ejecutar​ ​un​ ​código​ ​que​ ​se​ ​encargue​ ​de​ ​buscar​ ​el​ ​último
pedido​ ​del​ ​cliente​ ​y​ ​actualizar​ ​su​ ​fecha.

Crea​ ​solo​ ​una​ ​actualización​ ​por​ ​tabla
Si​ ​tenemos​ ​que​ ​actualizar​ ​más​ ​de​ ​un​ ​campo​ ​en​ ​la​ ​tabla​ ​maestra​ ​no​ ​tiene​ ​ningún​ ​sentido​ ​crear​ ​una
actualización​ ​para​ ​cada​ ​campo.​ ​Esto​ ​además​ ​de​ ​hacer​ ​crecer​ ​el​ ​tamaño​ ​de​ ​nuestro​ ​proyecto​ ​es​ ​peor​ ​a
nivel​ ​de​ ​rendimiento​ ​porque​ ​obliga​ ​a​ ​ejecutar​ ​varias​ ​actualizaciones​ ​contra​ ​el​ ​mismo​ ​registro.​ ​Por​ ​lo​ ​tanto
siempre​ ​que​ ​tengamos​ ​que​ ​hacer​ ​actualizaciones​ ​a​ ​una​ ​tabla​ ​maestra​ ​debemos​ ​incluir​ ​en​ ​la​ ​misma​ ​tantos
componentes​ ​de​ ​actualización​ ​como​ ​sean​ ​necesarios.

62

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Utiliza​ ​actualizaciones​ ​condicionadas
La​ ​versatilidad​ ​de​ ​las​ ​actualizaciones​ ​se​ ​ve​ ​potenciada​ ​con​ ​la​ ​posibilidad​ ​de​ ​utilizar​ ​condiciones.​ ​El
principal​ ​motivo​ ​es​ ​que​ ​Velneo​ ​es​ ​capaz​ ​de​ ​actualizar​ ​en​ ​función​ ​de​ ​la​ ​condición​ ​de​ ​forma​ ​automática,​ ​es
decir,​ ​que​ ​si​ ​se​ ​cumple​ ​la​ ​condición​ ​aplica​ ​la​ ​actualización​ ​y​ ​si​ ​deja​ ​de​ ​cumplirse​ ​aplica​ ​la​ ​actualización
contraria,​ ​y​ ​lo​ ​más​ ​importante​ ​sin​ ​programar​ ​lo​ ​que​ ​reduce​ ​la​ ​posibilidad​ ​de​ ​errores​ ​del​ ​programador.

Por​ ​ejemplo​ ​si​ ​condicionamos​ ​una​ ​actualización​ ​del​ ​nº​ ​de​ ​líneas​ ​recibidas​ ​de​ ​un​ ​pedido​ ​a​ ​que​ ​la​ ​línea​ ​esté
recibida​ ​o​ ​cancelada,​ ​cuando​ ​se​ ​cumple​ ​la​ ​condición​ ​se​ ​suma​ ​1​ ​al​ ​campo​ ​de​ ​la​ ​tabla​ ​maestra,​ ​sin​ ​embargo,
al​ ​cambiar​ ​la​ ​condición​ ​si​ ​ya​ ​no​ ​se​ ​cumple​ ​se​ ​resta​ ​1.

63

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Por​ ​este​ ​motivo​ ​es​ ​conveniente​ ​pensar​ ​si​ ​podemos​ ​crear​ ​una​ ​actualización​ ​antes​ ​de​ ​escribir​ ​código.

No​ ​utilices​ ​variables​ ​locales​ ​en​ ​la​ ​condición​ ​o​ ​fórmula​ ​de​ ​las​ ​actualizaciones
Aunque​ ​las​ ​tablas​ ​permite​ ​declarar​ ​variables​ ​locales​ ​cuyo​ ​valor​ ​podemos​ ​alterar​ ​y​ ​usar​ ​en​ ​todos​ ​los
eventos​ ​de​ ​tabla,​ ​por​ ​el​ ​momento​ ​Velneo​ ​no​ ​es​ ​capaz​ ​de​ ​usar​ ​el​ ​valor​ ​de​ ​esas​ ​variables​ ​locales​ ​en​ ​las
actualizaciones,​ ​ni​ ​en​ ​la​ ​fórmula​ ​del​ ​valor​ ​ni​ ​en​ ​la​ ​condición​ ​para​ ​modificar.

Hay​ ​que​ ​tenerlo​ ​en​ ​cuenta​ ​porque​ ​el​ ​editor​ ​sí​ ​nos​ ​permite​ ​usarlas​ ​en​ ​las​ ​fórmulas,​ ​pero​ ​en​ ​ejecución​ ​no
funcionará.

Evita​ ​complejas​ ​actualizaciones​ ​encadenadas​ ​que​ ​puedan​ ​ocasionar​ ​conflictos​ ​por​ ​bloqueo
Con​ ​las​ ​grandes​ ​virtudes​ ​que​ ​tienen​ ​las​ ​actualizaciones​ ​es​ ​lógico​ ​usarlas​ ​masivamente​ ​y​ ​con​ ​total
tranquilidad.

Sin​ ​embargo,​ ​de​ ​la​ ​misma​ ​forma​ ​que​ ​nos​ ​puede​ ​ocurrir​ ​con​ ​los​ ​contenidos​ ​iniciales​ ​de​ ​campos​ ​donde
podemos​ ​por​ ​mala​ ​definición​ ​crear​ ​un​ ​cálculo​ ​recursivo,​ ​en​ ​las​ ​actualizaciones​ ​nos​ ​puede​ ​pasar​ ​lo​ ​mismo.
Por​ ​ejemplo,​ ​podríamos​ ​cometer​ ​el​ ​error​ ​de​ ​que​ ​la​ ​tabla​ ​A​ ​actualiza​ ​la​ ​tabla​ ​B,​ ​la​ ​tabla​ ​B​ ​actualiza​ ​la​ ​tabla​ ​C
y​ ​la​ ​tabla​ ​C​ ​actualiza​ ​la​ ​tabla​ ​A​ ​produciendo​ ​un​ ​error​ ​por​ ​recursividad​ ​ya​ ​que​ ​tras​ ​la​ ​modificación​ ​de​ ​la​ ​tabla
C​ ​a​ ​la​ ​A​ ​volvería​ ​a​ ​empezar​ ​el​ ​ciclo.​ ​Sin​ ​duda​ ​se​ ​trataría​ ​de​ ​un​ ​error​ ​de​ ​programación​ ​que​ ​seguramente
podemos​ ​evitar​ ​aplicando​ ​condiciones​ ​a​ ​las​ ​actualizaciones​ ​para​ ​evitar​ ​que​ ​ejecute​ ​más​ ​de​ ​un​ ​ciclo.

Eventos​ ​de​ ​tabla​ ​o​ ​triggers

No​ ​modifiques​ ​datos​ ​en​ ​el​ ​trigger​ ​posterior
Aunque​ ​parezca​ ​de​ ​perogrullo,​ ​lo​ ​cierto​ ​es​ ​que​ ​a​ ​veces​ ​ocurre​ ​que​ ​por​ ​despiste​ ​o​ ​por​ ​copia/pega​ ​puedes
ver​ ​código​ ​en​ ​un​ ​trigger​ ​posterior​ ​al​ ​alta​ ​o​ ​modificación​ ​tratando​ ​de​ ​modificar​ ​el​ ​registro​ ​que​ ​acaba​ ​de​ ​ser
creado​ ​o​ ​modificado.

Lo​ ​peor​ ​de​ ​todo​ ​es​ ​que​ ​si​ ​el​ ​programador​ ​trata​ ​de​ ​ver​ ​el​ ​valor​ ​de​ ​los​ ​campos​ ​modificados​ ​obtendrá​ ​que​ ​la
ficha​ ​en​ ​memoria​ ​ha​ ​cambiado​ ​y​ ​puede​ ​considerar​ ​que​ ​la​ ​programación​ ​es​ ​correcta,​ ​sin​ ​embargo,
debemos​ ​tener​ ​presente​ ​que​ ​en​ ​el​ ​trigger​ ​posterior​ ​ya​ ​que​ ​no​ ​se​ ​cambia​ ​la​ ​ficha​ ​en​ ​disco,​ ​por​ ​mucho​ ​que
cambiemos​ ​los​ ​valores​ ​de​ ​los​ ​campos​ ​en​ ​la​ ​ficha​ ​en​ ​memoria.

No​ ​dejes​ ​eventos​ ​de​ ​tabla​ ​vacíos
Existen​ ​hasta​ ​9​ ​posibles​ ​eventos​ ​de​ ​tabla​ ​diferentes​ ​y​ ​en​ ​ocasiones​ ​se​ ​crean​ ​con​ ​un​ ​código​ ​que
posteriormente​ ​se​ ​modifica​ ​o​ ​incluso​ ​se​ ​elimina.​ ​Debemos​ ​tratar​ ​de​ ​dejar​ ​siempre​ ​nuestro​ ​código​ ​lo​ ​más
limpio​ ​posible,​ ​y​ ​si​ ​quitamos​ ​todas​ ​las​ ​líneas​ ​de​ ​un​ ​evento​ ​de​ ​tabla,​ ​debemos​ ​eliminarlo​ ​ya​ ​que​ ​de​ ​lo
contrario​ ​estamos​ ​dejando​ ​un​ ​subobjeto​ ​que​ ​además​ ​de​ ​ocupar​ ​espacio​ ​también​ ​consume​ ​tiempo​ ​de
ejecución​ ​al​ ​tener​ ​que​ ​evaluarlo​ ​al​ ​producirse​ ​una​ ​operación​ ​transaccional​ ​en​ ​la​ ​tabla.

64

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Variables​ ​globales
Este​ ​objeto​ ​de​ ​datos​ ​puede​ ​ser​ ​de​ ​dos​ ​tipos​ ​según​ ​su​ ​persistente,​ ​en​ ​disco​ ​o​ ​en​ ​memoria.

Uso​ ​controlado​ ​de​ ​las​ ​variables​ ​globales​ ​en​ ​disco
La​ ​gran​ ​virtud​ ​de​ ​una​ ​variable​ ​global​ ​en​ ​disco​ ​es​ ​la​ ​sencillez​ ​con​ ​la​ ​que​ ​se​ ​declara​ ​y​ ​que​ ​está​ ​accesible​ ​a
todos​ ​los​ ​ámbitos​ ​de​ ​la​ ​aplicación.

Debido​ ​a​ ​que​ ​su​ ​funcionamientos​ ​es​ ​similar​ ​al​ ​de​ ​una​ ​tabla​ ​por​ ​lo​ ​que​ ​cada​ ​vez​ ​que​ ​hacemos​ ​referencia​ ​a
una​ ​variable​ ​global​ ​en​ ​disco​ ​en​ ​una​ ​fórmula​ ​o​ ​comando​ ​de​ ​instrucción​ ​ejecutados​ ​en​ ​el​ ​cliente​ ​estamos
provocando​ ​una​ ​conexión​ ​al​ ​servidor​ ​para​ ​solicitar​ ​el​ ​valor​ ​actual.​ ​Por​ ​lo​ ​tanto​ ​debemos​ ​usarla​ ​con​ ​mucha
precaución​ ​sobre​ ​todo​ ​en​ ​aplicaciones​ ​que​ ​se​ ​van​ ​a​ ​ejecutar​ ​en​ ​el​ ​Cloud.

Esto​ ​no​ ​es​ ​óptimo​ ​por​ ​lo​ ​que​ ​en​ ​muchos​ ​casos​ ​es​ ​preferible​ ​usar​ ​una​ ​tabla​ ​de​ ​configuración​ ​con​ ​un​ ​solo
registro​ ​en​ ​el​ ​que​ ​incluimos​ ​los​ ​campos​ ​que​ ​deseamos​ ​compartir​ ​por​ ​todos​ ​los​ ​usuarios.​ ​La​ ​ventaja​ ​de​ ​la
tabla​ ​es​ ​que​ ​una​ ​vez​ ​cacheada​ ​en​ ​memoria​ ​su​ ​lectura​ ​no​ ​requiere​ ​conexión​ ​al​ ​servidor​ ​y​ ​si​ ​hay​ ​cambios​ ​el
refresco​ ​en​ ​tercer​ ​plano​ ​se​ ​encarga​ ​de​ ​actualizarla.

Otra​ ​posible​ ​optimización​ ​es​ ​crear​ ​una​ ​variable​ ​global​ ​en​ ​memoria​ ​que​ ​rellenamos​ ​al​ ​arrancar​ ​la​ ​aplicación
con​ ​el​ ​valor​ ​de​ ​la​ ​variable​ ​global​ ​en​ ​disco,​ ​por​ ​lo​ ​que​ ​reducimos​ ​el​ ​número​ ​de​ ​conexiones​ ​al​ ​servidor​ ​a​ ​una.
Sin​ ​embargo,​ ​esto​ ​solo​ ​es​ ​válido​ ​si​ ​no​ ​necesitamos​ ​tener​ ​su​ ​valor​ ​actualizado​ ​en​ ​caso​ ​de​ ​que​ ​haya
cambiado.

Las​ ​variables​ ​globales​ ​son​ ​compartidas
Las​ ​variables​ ​globales​ ​en​ ​disco​ ​con​ ​compartidas​ ​por​ ​todos​ ​los​ ​usuarios,​ ​sin​ ​embargo​ ​las​ ​variables
globales​ ​en​ ​memoria​ ​son​ ​compartidas​ ​exclusivamente​ ​por​ ​el​ ​cliente​ ​que​ ​las​ ​ejecuta.

Si​ ​en​ ​una​ ​misma​ ​máquina​ ​ejecutamos​ ​varios​ ​vClient,​ ​cada​ ​vClient​ ​tendrá​ ​su​ ​propia​ ​instancia​ ​de​ ​las
variables​ ​en​ ​memoria,​ ​esa​ ​instancia​ ​de​ ​la​ ​variable​ ​es​ ​compartida​ ​para​ ​todos​ ​los​ ​objetos​ ​de​ ​la​ ​aplicación​ ​de
ese​ ​vClient,​ ​pero​ ​no​ ​será​ ​visible​ ​para​ ​el​ ​resto​ ​de​ ​vClient.

Debemos​ ​tener​ ​en​ ​cuenta​ ​que​ ​en​ ​el​ ​servidor​ ​también​ ​se​ ​crean​ ​variables​ ​globales​ ​en​ ​memoria​ ​por​ ​lo​ ​que
podemos​ ​usarlas​ ​para​ ​compartir​ ​información​ ​entre​ ​todos​ ​los​ ​usuarios​ ​teniendo​ ​siempre​ ​presente​ ​que​ ​el
valor​ ​de​ ​esa​ ​variable​ ​se​ ​perderá​ ​en​ ​el​ ​reinicio​ ​del​ ​Velneo​ ​vServer.​ ​Estas​ ​variables​ ​pueden​ ​ser​ ​interesantes
para​ ​contener​ ​información​ ​en​ ​curso​ ​como​ ​podría​ ​ser​ ​el​ ​caso​ ​de​ ​las​ ​sesiones​ ​web​ ​conectadas​ ​en​ ​una
aplicación​ ​que​ ​devuelva​ ​contenido​ ​para​ ​web.

65

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Constantes
Como​ ​su​ ​nombre​ ​indica​ ​este​ ​objeto​ ​está​ ​destinado​ ​a​ ​almacenar​ ​valores​ ​fijos​ ​que​ ​no​ ​podrán​ ​alterarse​ ​en
tiempo​ ​de​ ​ejecución.

Usa​ ​constantes​ ​para​ ​todos​ ​los​ ​textos​ ​que​ ​puedan​ ​requerir​ ​traducción
Cuando​ ​escribimos​ ​textos​ ​en​ ​las​ ​propiedades​ ​de​ ​los​ ​objetos,​ ​subobjetos​ ​y​ ​controles​ ​de​ ​nuestra​ ​aplicación
dependiendo​ ​del​ ​tipo​ ​de​ ​propiedad​ ​se​ ​pueden​ ​traducir​ ​directamente​ ​con​ ​el​ ​componente​ ​de​ ​la​ ​plataforma
Velneo​ ​vTranslator,​ ​sin​ ​embargo​ ​los​ ​textos​ ​escritos​ ​en​ ​fórmulas​ ​no​ ​se​ ​pueden​ ​traducir,​ ​con​ ​el​ ​fin​ ​de
facilitar​ ​la​ ​traducción​ ​de​ ​todos​ ​los​ ​textos​ ​es​ ​recomendable​ ​utilizar​ ​constantes​ ​en​ ​todos​ ​los​ ​textos​ ​usados
en​ ​fórmulas.

Organiza​ ​las​ ​constantes​ ​por​ ​su​ ​uso
A​ ​medida​ ​que​ ​va​ ​creciendo​ ​una​ ​aplicación​ ​se​ ​hace​ ​necesario​ ​organizar​ ​las​ ​constantes​ ​que​ ​vamos
declarando,​ ​una​ ​posible​ ​organización​ ​es​ ​la​ ​que​ ​vemos​ ​en​ ​la​ ​siguiente​ ​captura.

En​ ​la​ ​tabla​ ​siguiente​ ​se​ ​muestran​ ​las​ ​agrupaciones​ ​más​ ​habituales​ ​de​ ​constantes​ ​así​ ​como​ ​el​ ​prefijo
utilizado:

Tipo Prefijo Descripción

Errores ERR_ Utilizadas​ ​en​ ​los​ ​mensajes​ ​de​ ​error​ ​de​ ​las​ ​diferentes​ ​verificaciones.

Mensajes MSG_ Utilizadas​ ​para​ ​los​ ​textos​ ​que​ ​visualizan​ ​en​ ​mensajes​ ​informativos.

66

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Preguntas PRG_ Utilizadas​ ​para​ ​contener​ ​los​ ​textos​ ​usados​ ​en​ ​preguntas​ ​y
confirmaciones.

Textos TXT_ Utilizadas​ ​para​ ​contener​ ​textos​ ​de​ ​uso​ ​general​ ​como​ ​nombres​ ​de
tablas​ ​u​ ​otros​ ​términos.

Dentro​ ​de​ ​cada​ ​carpeta​ ​las​ ​constantes​ ​se​ ​organizan​ ​alfabéticamente.​ ​En​ ​el​ ​caso​ ​de​ ​que​ ​tenemos​ ​muchas
(>30)​ ​constantes​ ​podemos​ ​crear​ ​subcarpetas​ ​como​ ​vemos​ ​en​ ​la​ ​imagen​ ​superior​ ​para​ ​agruparlas​ ​según
su​ ​letra​ ​inicial​ ​del​ ​identificador.

67

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Imágenes
Lo​ ​primero​ ​que​ ​tenemos​ ​que​ ​tener​ ​claro​ ​es​ ​que​ ​en​ ​muchos​ ​proyectos​ ​el​ ​mayor​ ​tamaño​ ​viene​ ​dado​ ​por​ ​las
imágenes​ ​incluidas​ ​en​ ​el​ ​mismo.​ ​Las​ ​imágenes​ ​son​ ​un​ ​gran​ ​recurso,​ ​pero​ ​mal​ ​utilizado​ ​puede​ ​ser​ ​un​ ​gran
enemigo​ ​a​ ​la​ ​hora​ ​de​ ​tener​ ​proyectos​ ​con​ ​un​ ​tamaño​ ​reducido.

Reduce​ ​el​ ​número
Como​ ​programadores​ ​nos​ ​gusta​ ​disponer​ ​de​ ​recursos​ ​gráficos​ ​para​ ​aplicar​ ​como​ ​iconos​ ​para​ ​botones,
toolbars,​ ​etc.​ ​Por​ ​ese​ ​motivo​ ​tendemos​ ​a​ ​añadir​ ​a​ ​nuestros​ ​proyectos​ ​todos​ ​los​ ​iconos​ ​que​ ​consideramos
de​ ​uso​ ​habitual​ ​en​ ​las​ ​aplicaciones.​ ​El​ ​objetivo​ ​es​ ​noble,​ ​pero​ ​la​ ​realidad​ ​es​ ​bien​ ​distinta,​ ​todo​ ​lo​ ​que​ ​no​ ​se
usa​ ​sobra,​ ​por​ ​lo​ ​tanto​ ​deja​ ​solo​ ​en​ ​tus​ ​proyectos​ ​las​ ​imágenes​ ​que​ ​realmente​ ​usas​ ​y​ ​elimina​ ​las​ ​que​ ​no
utilices.​ ​La​ ​excusa​ ​del​ ​“por​ ​si​ ​acaso”​ ​no​ ​es​ ​válida,​ ​no​ ​hay​ ​ningún​ ​problema​ ​en​ ​añadir​ ​una​ ​imagen​ ​o​ ​icono​ ​en
el​ ​momento​ ​que​ ​la​ ​necesites.

No​ ​incluyas​ ​las​ ​imágenes​ ​a​ ​través​ ​del​ ​portapapeles
Cuando​ ​incluimos​ ​imágenes​ ​en​ ​nuestros​ ​proyectos​ ​debemos​ ​tratar​ ​de​ ​importarlas​ ​siempre​ ​directamente
de​ ​un​ ​fichero​ ​en​ ​disco,​ ​es​ ​la​ ​mejor​ ​forma​ ​de​ ​garantizar​ ​que​ ​la​ ​estamos​ ​importando​ ​con​ ​las​ ​optimizaciones
adecuadas.​ ​Si​ ​por​ ​ejemplo​ ​copiamos​ ​una​ ​imagen​ ​al​ ​portapapeles​ ​lo​ ​más​ ​probable​ ​es​ ​que​ ​su​ ​formato​ ​sufra
una​ ​conversión​ ​que​ ​nos​ ​haga​ ​perder​ ​toda​ ​optimización​ ​que​ ​hayamos​ ​realizado.

Optimiza​ ​las​ ​imágenes​ ​antes​ ​de​ ​importarlas
Cuando​ ​vayamos​ ​a​ ​importar​ ​una​ ​imagen​ ​o​ ​icono​ ​en​ ​nuestro​ ​proyecto​ ​antes​ ​de​ ​importarla​ ​es​ ​recomendable
pasarla​ ​previamente​ ​por​ ​un​ ​sistema​ ​de​ ​optimización​ ​que​ ​reduzca​ ​su​ ​paleta​ ​de​ ​colores​ ​o​ ​tamaño.​ ​De​ ​esta
forma​ ​podemos​ ​ganar​ ​cientos​ ​de​ ​bytes​ ​que​ ​siempre​ ​son​ ​de​ ​agradecer​ ​para​ ​conseguir​ ​proyectos​ ​del​ ​menor
tamaño​ ​posible​ ​lo​ ​que​ ​agiliza​ ​su​ ​almacenamiento​ ​y​ ​el​ ​envío​ ​del​ ​mismo​ ​por​ ​Internet.​ ​Existe​ ​multitud​ ​de
aplicaciones​ ​y​ ​servicios​ ​online​ ​para​ ​hacerlo​ ​como​ ​por​ ​ejemplo​ ​​tinypng.com​​ ​que​ ​nos​ ​permite​ ​arrastrar​ ​y
soltar​ ​múltiples​ ​imágenes​ ​de​ ​diferentes​ ​formatos​ ​y​ ​que​ ​son​ ​optimizadas​ ​individualmente​ ​para​ ​su
descarga.

68

https://tinypng.com/

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

¿Dónde​ ​ubicar​ ​los​ ​objetos​ ​dibujo?
Si​ ​son​ ​imágenes​ ​o​ ​iconos​ ​que​ ​vamos​ ​a​ ​usar​ ​en​ ​esquemas​ ​o​ ​acciones​ ​definidas​ ​en​ ​el​ ​proyecto​ ​de​ ​datos​ ​no
nos​ ​queda​ ​más​ ​remedio​ ​que​ ​ubicarlas​ ​en​ ​el​ ​proyecto​ ​de​ ​datos.

Si​ ​son​ ​imágenes​ ​o​ ​iconos​ ​que​ ​vamos​ ​a​ ​usar​ ​la​ ​interfaz​ ​parece​ ​más​ ​lógico​ ​ubicarlas​ ​en​ ​el​ ​proyecto​ ​de
aplicación​ ​ya​ ​que​ ​de​ ​forma​ ​natural​ ​trataremos​ ​de​ ​localizarlas​ ​en​ ​el​ ​mismo​ ​proyecto​ ​donde​ ​estamos
creando​ ​la​ ​interfaz.​ ​Si​ ​el​ ​número​ ​de​ ​imágenes​ ​es​ ​reducido​ ​no​ ​merece​ ​la​ ​pena​ ​pensar​ ​en​ ​ubicarlo​ ​en​ ​el
proyecto​ ​de​ ​datos.

Si​ ​nuestro​ ​proyecto​ ​requiere​ ​el​ ​uso​ ​de​ ​cientos​ ​de​ ​imágenes​ ​o​ ​iconos​ ​y​ ​queremos​ ​“adelgazar”​ ​nuestro
proyecto​ ​de​ ​aplicación,​ ​podemos​ ​almacenarlas​ ​en​ ​el​ ​proyecto​ ​de​ ​datos​ ​que​ ​habitualmente​ ​ocupa​ ​una
décima​ ​parte​ ​del​ ​tamaño​ ​del​ ​proyecto​ ​de​ ​aplicación,​ ​consiguiendo​ ​así​ ​reducir​ ​el​ ​tamaño​ ​del​ ​proyecto​ ​de
aplicación​ ​sin​ ​que​ ​la​ ​penalización​ ​del​ ​proyecto​ ​de​ ​datos​ ​que​ ​suele​ ​cambiar​ ​mucho​ ​menos​ ​sea​ ​un
problema.

Evita​ ​la​ ​información​ ​redundante,​ ​icono​ ​y​ ​texto​ ​juntos​ ​no​ ​siempre​ ​tienen​ ​sentido
Cuando​ ​aplicamos​ ​un​ ​sistema​ ​de​ ​diseño​ ​conseguimos​ ​unicidad​ ​en​ ​nuestra​ ​aplicación,​ ​es​ ​decir,​ ​que​ ​el
usuario​ ​vea​ ​que​ ​toda​ ​la​ ​aplicación​ ​se​ ​comporta​ ​igual​ ​y​ ​tiene​ ​una​ ​interfaz​ ​homogénea.​ ​Uno​ ​de​ ​los​ ​aspectos
a​ ​considerar​ ​por​ ​el​ ​diseñador​ ​es​ ​en​ ​que​ ​casos​ ​se​ ​aplicarán​ ​iconos,​ ​cuando​ ​llevarán​ ​solo​ ​texto​ ​y​ ​cuando
deben​ ​llevar​ ​ambos​ ​datos.

Si​ ​un​ ​icono​ ​es​ ​muy​ ​representativo​ ​no​ ​necesita​ ​de​ ​texto,​ ​por​ ​ese​ ​motivo​ ​en​ ​la​ ​toolbars​ ​se​ ​pueden​ ​llegar​ ​a
utilizar​ ​solo​ ​iconos​ ​sin​ ​que​ ​el​ ​usuario​ ​tenga​ ​necesidad​ ​de​ ​más​ ​explicaciones​ ​para​ ​reconocerlos.​ ​Debemos
tener​ ​en​ ​cuenta​ ​que​ ​un​ ​texto​ ​se​ ​lee​ ​y​ ​se​ ​entiende​ ​mientras​ ​que​ ​una​ ​imagen​ ​requiere​ ​interpretación.

En​ ​el​ ​caso​ ​de​ ​los​ ​botones​ ​es​ ​habitual​ ​tener​ ​que​ ​usar​ ​texto​ ​ya​ ​que​ ​no​ ​siempre​ ​es​ ​fácil​ ​representar​ ​su
significado​ ​mediante​ ​iconos,​ ​por​ ​ese​ ​motivo​ ​puede​ ​ser​ ​más​ ​coherente​ ​no​ ​usar​ ​iconos​ ​en​ ​ningún​ ​botón

69

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

aunque​ ​muchos​ ​podrían​ ​tener​ ​un​ ​icono​ ​fácilmente​ ​reconocible.

En​ ​los​ ​menús​ ​el​ ​texto​ ​se​ ​hace​ ​necesario​ ​por​ ​lo​ ​que​ ​el​ ​uso​ ​del​ ​icono​ ​debería​ ​estar​ ​bastante​ ​justificado​ ​ya
que​ ​de​ ​lo​ ​contrario​ ​estaría​ ​metiendo​ ​ruido​ ​al​ ​ser​ ​información​ ​redundante​ ​respecto​ ​al​ ​texto.

​ ​​ ​​ ​
En​ ​los​ ​combobox​ ​se​ ​pueden​ ​usar​ ​iconos​ ​cuando​ ​representan​ ​información​ ​rápida​ ​de​ ​leer​ ​para​ ​el​ ​usuario,​ ​ya
que​ ​de​ ​lo​ ​contrario​ ​también​ ​caemos​ ​en​ ​la​ ​redundancia,​ ​por​ ​ese​ ​motivo​ ​entre​ ​poner​ ​solo​ ​icono​ ​o​ ​solo​ ​texto,
tiene​ ​más​ ​sentido​ ​usar​ ​solo​ ​texto.

Es​ ​cierto​ ​que​ ​para​ ​representar​ ​información​ ​de​ ​estados​ ​en​ ​una​ ​rejilla​ ​si​ ​puede​ ​ser​ ​más​ ​útil​ ​el​ ​icono​ ​debido​ ​a
que​ ​ocupa​ ​menos​ ​espacio​ ​que​ ​el​ ​texto,​ ​pero​ ​siempre​ ​y​ ​cuando​ ​el​ ​icono​ ​no​ ​requiera​ ​ninguna​ ​explicación.
Por​ ​ejemplo,​ ​un​ ​círculo​ ​verde​ ​=​ ​servido​ ​y​ ​un​ ​círculo,​ ​rojo​ ​=​ ​pendiente​ ​es​ ​algo​ ​que​ ​como​ ​programadores​ ​nos
parece​ ​lógico,​ ​pero​ ​que​ ​el​ ​usuario​ ​debe​ ​interpretar,​ ​es​ ​evidente​ ​que​ ​con​ ​el​ ​tiempo​ ​se​ ​acostumbrará​ ​a​ ​los
colores​ ​y​ ​su​ ​significado​ ​pero​ ​no​ ​es​ ​algo​ ​estándar​ ​que​ ​ya​ ​esté​ ​preestablecido.

Utiliza​ ​una​ ​librería​ ​de​ ​iconos​ ​homogénea
La​ ​iconografía​ ​de​ ​la​ ​aplicación​ ​debemos​ ​cuidarla​ ​tanto​ ​como​ ​cualquier​ ​otro​ ​aspecto​ ​de​ ​la​ ​interfaz.​ ​Debe
ser​ ​homogénea,​ ​es​ ​decir,​ ​no​ ​debemos​ ​buscar​ ​iconos​ ​por​ ​internet​ ​y​ ​mezclar​ ​iconos​ ​de​ ​diferentes​ ​librerías
porque​ ​se​ ​nota​ ​y​ ​queda​ ​muy​ ​mal,​ ​da​ ​una​ ​sensación​ ​de​ ​aplicación​ ​descuidada.

No​ ​utilices​ ​iconos​ ​de​ ​diferentes​ ​tamaños​ ​para​ ​los​ ​mismos​ ​contextos,​ ​si​ ​pones​ ​iconos​ ​en​ ​las​ ​toolbars​ ​todos
deben​ ​tener​ ​el​ ​mismo​ ​tamaño,​ ​y​ ​lo​ ​mismo​ ​debes​ ​hacerlo​ ​en​ ​los​ ​botones,​ ​menús,​ ​pestañas,​ ​etc.

No​ ​te​ ​compliques​ ​la​ ​vida​ ​buscando​ ​librerías​ ​con​ ​miles​ ​de​ ​iconos​ ​espectaculares​ ​porque​ ​los​ ​iconos​ ​no
deben​ ​ser​ ​“bonitos”​ ​sino​ ​que​ ​deben​ ​ser​ ​fáciles​ ​de​ ​interpretar​ ​y​ ​en​ ​este​ ​apartado​ ​los​ ​iconos​ ​más​ ​elaborados
y​ ​con​ ​más​ ​colores​ ​cumplen​ ​peor​ ​esta​ ​función.​ ​Fíjate​ ​en​ ​las​ ​señales​ ​de​ ​tráfico​ ​como​ ​utilizan​ ​muy​ ​pocos
colores​ ​y​ ​usan​ ​imágenes​ ​sencillas,​ ​fáciles​ ​de​ ​interpretar​ ​en​ ​muy​ ​poco​ ​tiempo.

70

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Si​ ​tenemos​ ​claro​ ​el​ ​objetivo​ ​que​ ​deben​ ​cumplir​ ​los​ ​iconos​ ​encontraremos​ ​que​ ​las​ ​librerías​ ​con​ ​iconos​ ​más
sencillos​ ​y​ ​de​ ​un​ ​solo​ ​color​ ​están​ ​triunfando​ ​en​ ​la​ ​web,​ ​las​ ​aplicaciones​ ​para​ ​móviles​ ​y​ ​en​ ​las​ ​de​ ​escritorio
más​ ​modernas.

Material​ ​Design​ ​Icons​​ ​de​ ​Google​ ​es​ ​una​ ​gran​ ​librería​ ​que​ ​cuenta​ ​con​ ​miles​ ​de​ ​iconos​ ​y​ ​que​ ​además
podremos​ ​extender​ ​con​ ​otras​ ​muchas​ ​librerías​ ​gratuitas​ ​y​ ​de​ ​pago​ ​que​ ​han​ ​sido​ ​desarrolladas​ ​con​ ​el
mismo​ ​sistema​ ​y​ ​que​ ​por​ ​lo​ ​tanto​ ​podremos​ ​combinar​ ​sin​ ​que​ ​se​ ​aprecien​ ​diferencias​ ​de​ ​estilo.

En​ ​esta​ ​página​ ​web​ ​contamos​ ​con​ ​un​ ​buscador​ ​que​ ​nos​ ​facilita​ ​localizar​ ​iconos.​ ​Una​ ​de​ ​las​ ​grandes
ventajas​ ​de​ ​esta​ ​librería​ ​es​ ​que​ ​cualquier​ ​usuario​ ​que​ ​tenga​ ​un​ ​móvil​ ​Android​ ​o​ ​que​ ​use​ ​aplicaciones​ ​de
Google​ ​en​ ​iOS​ ​se​ ​sentirá​ ​cómodo​ ​porque​ ​en​ ​muchos​ ​casos​ ​lo​ ​reconocerá​ ​de​ ​forma​ ​directa.

Una​ ​de​ ​las​ ​ventajas​ ​de​ ​esta​ ​página​ ​web​ ​es​ ​que​ ​cuando​ ​seleccionamos​ ​un​ ​icono​ ​accedemos​ ​a​ ​una​ ​página
que​ ​nos​ ​permite​ ​exportarlo​ ​a​ ​diferentes​ ​formatos.

71

https://materialdesignicons.com/

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Y​ ​además​ ​con​ ​el​ ​botón​ ​Advanced​ ​Export​ ​podremos​ ​acceder​ ​a​ ​un​ ​editor​ ​que​ ​nos​ ​permitirá​ ​realizar​ ​múltiples
configuración​ ​del​ ​icono​ ​tanto​ ​en​ ​tamaño​ ​como​ ​en​ ​colores​ ​de​ ​fondo,​ ​primer​ ​plano,​ ​padding​ ​y​ ​radio.

72

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Tras​ ​configurar​ ​el​ ​icono​ ​a​ ​nuestro​ ​gusto​ ​podemos​ ​aplicarle​ ​un​ ​nombre​ ​al​ ​icono​ ​y​ ​exportar​ ​con​ ​el​ ​botón
Icon,​ ​o​ ​incluso​ ​podemos​ ​exportarlo​ ​en​ ​formato​ ​SVG.

Utiliza​ ​iconos​ ​para​ ​dar​ ​soporte​ ​a​ ​High​ ​DPI
Un​ ​aspecto​ ​que​ ​debemos​ ​tener​ ​en​ ​cuenta​ ​en​ ​el​ ​desarrollo​ ​de​ ​nuestras​ ​aplicaciones​ ​es​ ​que​ ​los​ ​dispositivos
actuales​ ​y​ ​más​ ​aún​ ​en​ ​el​ ​futuro​ ​tienen​ ​resoluciones​ ​mucho​ ​más​ ​altas​ ​que​ ​el​ ​FullHD​ ​(1920x1080),​ ​los
dispositivos​ ​móviles,​ ​tabletas​ ​de​ ​alta​ ​resolución​ ​e​ ​incluso​ ​las​ ​pantalla​ ​con​ ​resolución​ ​4K​ ​empiezan​ ​a​ ​ser
más​ ​habituales,​ ​por​ ​este​ ​motivo​ ​no​ ​podemos​ ​incluir​ ​en​ ​nuestra​ ​aplicación​ ​iconos​ ​de​ ​16x16​ ​o​ ​32x32​ ​ya​ ​que
en​ ​estas​ ​pantallas​ ​se​ ​verán​ ​pixelados.​ ​Para​ ​resolver​ ​este​ ​problema​ ​debemos​ ​incluir​ ​en​ ​nuestra​ ​aplicación
iconos​ ​con​ ​una​ ​resolución​ ​de​ ​64x64​ ​o​ ​96x96​ ​para​ ​tener​ ​cubiertas​ ​futuras​ ​resoluciones.

CSS
Uno​ ​de​ ​los​ ​aspectos​ ​más​ ​importantes​ ​en​ ​el​ ​desarrollo​ ​de​ ​una​ ​interfaz​ ​de​ ​una​ ​aplicación​ ​es​ ​disponer​ ​de​ ​la
posibilidad​ ​de​ ​aplicar​ ​cambios​ ​en​ ​el​ ​diseño​ ​de​ ​forma​ ​global,​ ​sin​ ​estar​ ​obligados​ ​a​ ​realizar​ ​cambios​ ​de
forma​ ​manual​ ​en​ ​todos​ ​los​ ​objetos​ ​de​ ​interfaz​ ​de​ ​nuestra​ ​aplicación.

Las​ ​CSS​ ​nos​ ​permiten​ ​en​ ​Velneo​ ​cambiar​ ​de​ ​forma​ ​sencilla​ ​y​ ​rápida​ ​aspectos​ ​de​ ​la​ ​interfaz​ ​tan
importantes​ ​como​ ​los​ ​colores,​ ​tipografía,​ ​tamaños,​ ​márgenes,​ ​iconos,​ ​etc.

Para​ ​crear​ ​unas​ ​CSS​ ​coherentes​ ​es​ ​necesario​ ​usar​ ​un​ ​sistema​ ​de​ ​diseño​ ​que​ ​nos​ ​facilite​ ​su​ ​creación.​ ​Así
que​ ​lo​ ​primero​ ​que​ ​debemos​ ​hacer​ ​es​ ​crear​ ​nuestro​ ​propio​ ​sistema​ ​de​ ​diseño​ ​o​ ​seleccionar​ ​uno​ ​ya
existente​ ​para​ ​aplicarlo​ ​en​ ​nuestros​ ​desarrollos.

¿Qué​ ​es​ ​un​ ​sistema​ ​de​ ​diseño?
“Un​ ​sistema​ ​de​ ​diseño​ ​es​ ​un​ ​conjunto​ ​de​ ​reglas​ ​que​ ​organizan,​ ​dan​ ​consistencia​ ​y​ ​armonía​ ​a​ ​un​ ​entorno
complejo​ ​y​ ​variable​ ​de​ ​contenido​ ​y​ ​funcionalidad.

Para​ ​que​ ​un​ ​sistema​ ​sea​ ​tal,​ ​es​ ​importante​ ​que​ ​cumpla​ ​algunas​ ​premisas:​ ​que​ ​sea​ ​escalable,​ ​que​ ​su​ ​unidad
mínima​ ​se​ ​base​ ​en​ ​una​ ​certeza,​ ​que​ ​sea​ ​recursivo​ ​en​ ​sus​ ​formas​ ​y​ ​proporciones,​ ​que​ ​regule​ ​no​ ​sólo​ ​la​ ​forma
y​ ​comportamiento​ ​de​ ​los​ ​objetos​ ​sino​ ​también​ ​las​ ​relaciones​ ​entre​ ​ellos,​ ​que​ ​sea​ ​eficiente,​ ​predecible​ ​y
sometedor.​ ​Esto​ ​es,​ ​que​ ​una​ ​vez​ ​definido,​ ​obligue​ ​a​ ​todo​ ​contenido​ ​o​ ​funcionalidad​ ​a​ ​existir​ ​bajo​ ​sus​ ​propias
reglas.”

Javier​ ​Cañada​ ​(Director​ ​de​ ​diseño)

Una​ ​de​ ​las​ ​tareas​ ​más​ ​importantes​ ​de​ ​las​ ​personas​ ​que​ ​trabajan​ ​en​ ​diseño​ ​de​ ​producto,​ ​ya​ ​sean​ ​el​ ​gestor
de​ ​producto​ ​o​ ​un​ ​diseñador​ ​de​ ​producto,​ ​es​ ​crear​ ​un​ ​sistema​ ​de​ ​diseño​ ​coherente​ ​para​ ​el​ ​producto​ ​que​ ​se
adapte​ ​a​ ​los​ ​diferentes​ ​canales​ ​en​ ​los​ ​que​ ​va​ ​a​ ​vivir​ ​(producto​ ​físico,​ ​producto​ ​digital,​ ​cartelería​ ​física,
banners​ ​para​ ​los​ ​diferentes​ ​canales​ ​digitales,​ ​etc…).

73

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

¿Por​ ​qué​ ​es​ ​tan​ ​importante​ ​tener​ ​un​ ​sistema​ ​de​ ​diseño?
Tener​ ​un​ ​sistema​ ​de​ ​diseño​ ​coherente,​ ​ya​ ​sea​ ​de​ ​creación​ ​propia​ ​o​ ​adaptado​ ​a​ ​partir​ ​de​ ​alguno
preexistente,​ ​es​ ​una​ ​buena​ ​manera​ ​tanto​ ​de​ ​tener​ ​un​ ​sistema​ ​consistente​ ​para​ ​el​ ​usuario,​ ​así​ ​como​ ​una
manera​ ​de​ ​enganchar​ ​fácilmente​ ​a​ ​nuevos​ ​miembros​ ​del​ ​equipo​ ​de​ ​trabajo​ ​y​ ​que​ ​se​ ​adapten​ ​a​ ​nuestra
forma​ ​de​ ​trabajar​ ​de​ ​una​ ​manera​ ​rápida​ ​y​ ​sencilla.

En​ ​Velneo​ ​actualmente​ ​estamos​ ​utilizando​ ​el​ ​siguiente​ ​sistema.

Sistema​ ​de​ ​diseño.​ ​Colores
El​ ​sistema​ ​especifica​ ​los​ ​colores​ ​que​ ​podemos​ ​usar​ ​en​ ​nuestra​ ​aplicación,​ ​no​ ​debemos​ ​salirnos​ ​de​ ​esta
paleta​ ​de​ ​colores​ ​y​ ​hay​ ​que​ ​combinarlos​ ​de​ ​la​ ​forma​ ​adecuada​ ​para​ ​conseguir​ ​una​ ​interfaz​ ​limpia,​ ​sencilla
y​ ​a​ ​la​ ​vez​ ​elegante​ ​para​ ​el​ ​usuario.

74

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

A​ ​continuación​ ​se​ ​detallan​ ​los​ ​colores​ ​con​ ​su​ ​valor​ ​hexadecimal.

Nombre​ ​color Color​ ​hexadecimal

Grey​ ​800 #424242

Grey​ ​600 #757575

Grey​ ​300 #E0E0E0

Indigo​ ​700​ ​/​ ​Acento #3F51B5

Indigo​ ​100 #C5CAE9

Red​ ​700 #D32F2F

Orange​ ​500 #FF9800

Green​ ​500 #4CAF50

White​ ​/​ ​Grey​ ​200 border:​ ​1px​ ​solid​ ​#E0E0E0;

White​ ​/​ ​Indigo​ ​700 border:​ ​1px​ ​solid​ ​#3F51B5;

75

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

White​ ​/​ ​Gray​ ​600 border:​ ​1px​ ​solid​ ​#757575;

Como​ ​podemos​ ​apreciar​ ​se​ ​usan​ ​las​ ​​paletas​ ​de​ ​colores​ ​de​ ​Material​ ​design​​ ​para​ ​combinar​ ​colores​ ​con
coherencia.

Sistema​ ​de​ ​diseño.​ ​Tipografía
El​ ​sistema​ ​también​ ​define​ ​las​ ​tipografías​ ​que​ ​podremos​ ​usar​ ​en​ ​la​ ​interfaz​ ​de​ ​la​ ​aplicación.

76

https://material.io/guidelines/style/color.html#

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Si​ ​nos​ ​fijamos​ ​el​ ​sistema​ ​no​ ​especifica​ ​una​ ​tipografía​ ​en​ ​concreto,​ ​esto​ ​es​ ​debido​ ​a​ ​que​ ​como​ ​Velneo​ ​es
multiplataforma​ ​utilizaremos​ ​en​ ​la​ ​fuente​ ​de​ ​sistema,​ ​que​ ​es​ ​la​ ​propuesta​ ​por​ ​defecto.​ ​La​ ​ventaja​ ​es​ ​que
esa​ ​fuente​ ​siempre​ ​existe​ ​en​ ​el​ ​sistema​ ​del​ ​usuario​ ​final​ ​y​ ​no​ ​es​ ​necesario​ ​realizar​ ​ninguna​ ​instalación
adicional.​ ​Además,​ ​conseguimos​ ​que​ ​la​ ​interfaz​ ​se​ ​verá​ ​igual​ ​en​ ​desarrollo​ ​que​ ​en​ ​producción.

Los​ ​tamaños​ ​especificados​ ​en​ ​el​ ​sistema​ ​son:

● Los​ ​textos​ ​tanto​ ​estáticos​ ​como​ ​de​ ​edición​ ​son​ ​de​ ​12px.
○ Se​ ​usa​ ​el​ ​color​ ​GREY​ ​600​ ​para​ ​los​ ​textos​ ​estáticos.
○ Se​ ​usa​ ​el​ ​color​ ​GREY​ ​800​ ​para​ ​la​ ​edición.

● Los​ ​títulos​ ​(Tit)​ ​utilizarán​ ​un​ ​tamaño​ ​de​ ​24px.

Sistema​ ​de​ ​diseño.​ ​Unidad​ ​mínima
Uno​ ​de​ ​los​ ​aspectos​ ​clave​ ​del​ ​sistema​ ​es​ ​la​ ​unidad​ ​mínima.​ ​Es​ ​decir,​ ​el​ ​tamaño​ ​base​ ​para​ ​su​ ​aplicación​ ​en
el​ ​tamaño​ ​de​ ​todos​ ​los​ ​controles.​ ​En​ ​el​ ​sistema​ ​Velneo​ ​la​ ​unidad​ ​mínima​ ​es​ ​de​ ​10x10​ ​píxeles​ ​lo​ ​que
significa​ ​que​ ​todos​ ​los​ ​controles,​ ​formularios,​ ​columnas,​ ​etc.​ ​serán​ ​múltiplos​ ​de​ ​10​ ​en​ ​su​ ​alto​ ​o​ ​ancho.

77

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

La​ ​ventaja​ ​de​ ​usar​ ​un​ ​múltiplo​ ​de​ ​10​ ​es​ ​que​ ​es​ ​muy​ ​sencillo​ ​de​ ​calcular​ ​y​ ​también​ ​de​ ​aplicar​ ​ya​ ​que​ ​la
cuadrícula​ ​del​ ​editor​ ​de​ ​formularios​ ​está​ ​diseñada​ ​en​ ​base​ ​a​ ​esa​ ​misma​ ​unidad​ ​de​ ​referencia​ ​10x10.

Por​ ​este​ ​motivo​ ​siempre​ ​recomendamos​ ​diseñar​ ​los​ ​formularios​ ​con​ ​la​ ​cuadrícula​ ​activa,​ ​de​ ​esta​ ​forma
todos​ ​los​ ​controles​ ​se​ ​pueden​ ​añadir​ ​y​ ​ubicar​ ​fácilmente​ ​manteniendo​ ​las​ ​alineaciones​ ​correctas​ ​y
precisas.

Sistema​ ​de​ ​diseño.​ ​Unidad​ ​de​ ​referencia
La​ ​unidad​ ​de​ ​referencia​ ​es​ ​la​ ​base​ ​para​ ​el​ ​cálculo​ ​de​ ​las​ ​dimensiones​ ​de​ ​los​ ​controles,​ ​formularios​ ​y
columnas​ ​de​ ​nuestra​ ​aplicación.

En​ ​concreto​ ​el​ ​sistema​ ​Velneo​ ​utiliza​ ​la​ ​unidad​ ​120x30,​ ​es​ ​decir​ ​120​ ​píxeles​ ​de​ ​ancho​ ​por​ ​30​ ​de​ ​alto.​ ​Si
vemos​ ​las​ ​aplicaciones​ ​desarrolladas​ ​a​ ​partir​ ​de​ ​este​ ​sistema​ ​encontraremos​ ​que​ ​los​ ​botones​ ​tienen​ ​todos
estas​ ​dimensiones.​ ​Sin​ ​embargo,​ ​podemos​ ​encontrar​ ​botones​ ​que​ ​tengan​ ​un​ ​tamaño​ ​diferente​ ​debido​ ​a
que​ ​el​ ​texto​ ​a​ ​mostrar​ ​es​ ​largo​ ​y​ ​necesita​ ​un​ ​tamaño​ ​mayor​ ​o​ ​más​ ​pequeños​ ​si​ ​hay​ ​que​ ​ubicar​ ​muchos
botones​ ​en​ ​un​ ​mismo​ ​área.​ ​Para​ ​esas​ ​excepciones​ ​se​ ​aplicarán​ ​tamaños​ ​basados​ ​en​ ​la​ ​referencia
aplicando​ ​un​ ​factor​ ​de​ ​multiplicación​ ​división​ ​según​ ​queramos​ ​hacerlo​ ​más​ ​grande​ ​o​ ​más​ ​pequeño,​ ​es
decir​ ​que​ ​podemos​ ​tener​ ​botones​ ​de​ ​tamaño​ ​60,​ ​30​ ​o​ ​240​ ​que​ ​siguen​ ​aplicando​ ​el​ ​criterio​ ​de​ ​la​ ​unidad​ ​de
referencia.

78

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Sistema​ ​de​ ​diseño.​ ​Iconos
En​ ​el​ ​caso​ ​de​ ​las​ ​toolbars​ ​se​ ​utilizan​ ​icono​ ​con​ ​tamaño​ ​de​ ​24x24​ ​píxeles.​ ​Aún​ ​así​ ​hay​ ​que​ ​tener​ ​en​ ​cuenta
el​ ​High​ ​DPI,​ ​por​ ​ese​ ​motivo​ ​los​ ​iconos​ ​deben​ ​tener​ ​tamaños​ ​superiores​ ​como​ ​48x48,​ ​64x64​ ​o​ ​96x96​ ​ya​ ​que
al​ ​reducirlos​ ​a​ ​24x24​ ​se​ ​verán​ ​con​ ​buena​ ​calidad,​ ​sin​ ​embargo​ ​el​ ​efecto​ ​contrario​ ​genera​ ​pixelación.

En​ ​las​ ​rejillas​ ​se​ ​pueden​ ​usar​ ​iconos​ ​para​ ​representar​ ​información,​ ​tanto​ ​con​ ​campos​ ​objetos​ ​dibujo​ ​o​ ​con
iconos​ ​de​ ​tablas​ ​estáticas.​ ​En​ ​ambos​ ​casos​ ​el​ ​tamaño​ ​debería​ ​ajustarse​ ​a​ ​esos​ ​18x18​ ​o​ ​24x24​ ​y​ ​aplicar​ ​el
criterio​ ​de​ ​forma​ ​distinta​ ​para​ ​cada​ ​simbología,​ ​es​ ​decir​ ​combinar​ ​color​ ​con​ ​forma​ ​ayuda​ ​al​ ​usuario​ ​a
identificar​ ​el​ ​significado​ ​del​ ​color.

​ ​​ ​​ ​

79

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Sistema​ ​de​ ​diseño.​ ​Campos
A​ ​la​ ​hora​ ​de​ ​crear​ ​cajas​ ​de​ ​edición​ ​aplicaremos​ ​la​ ​unidad​ ​de​ ​referencia​ ​como​ ​tamaño​ ​base,​ ​sobre​ ​todo​ ​en
campos​ ​de​ ​ancho​ ​o​ ​alto​ ​fijo,​ ​sin​ ​embargo​ ​en​ ​campos​ ​con​ ​ancho​ ​por​ ​defecto​ ​o​ ​proporcional​ ​no​ ​tendremos
que​ ​ajustarnos​ ​a​ ​la​ ​unidad​ ​de​ ​referencia​ ​pues​ ​su​ ​tamaño​ ​dependerá​ ​del​ ​área​ ​disponible​ ​en​ ​el​ ​momento​ ​del
pintado,​ ​sin​ ​embargo​ ​sí​ ​que​ ​es​ ​conveniente​ ​que​ ​su​ ​tamaño​ ​en​ ​el​ ​editor​ ​de​ ​formularios​ ​se​ ​ajuste​ ​al​ ​máximo
posible​ ​a​ ​los​ ​valores​ ​de​ ​la​ ​unidad​ ​de​ ​referencia.

En​ ​cuanto​ ​a​ ​los​ ​colores​ ​de​ ​borde​ ​los​ ​controles​ ​de​ ​edición​ ​se​ ​aplican​ ​con​ ​la​ ​siguiente​ ​CSS.

QLineEdit,​ ​QTextEdit​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​#FFFFFF;

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#E0E0E0;

​ ​​ ​​ ​​ ​color:​ ​#212121;

​ ​​ ​​ ​​ ​height:​ ​30px;

​ ​​ ​​ ​​ ​padding-left:​ ​2px;

​ ​​ ​​ ​​ ​selection-background-color:​ ​#3F51B5;

​ ​​ ​​ ​​ ​selection-color:​ ​#FFFFFF;​ ​}

QLineEdit:hover,​ ​QTextEdit:hover​ ​{

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#757575;​ ​}

QLineEdit:focus,​ ​QTextEdit:focus​ ​{

​ ​​ ​​ ​​ ​border:​ ​2px​ ​solid​ ​#3F51B5;​ ​}

QLineEdit:disabled,​ ​QTextEdit:disabled​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​#BDBDBD;​ ​}

80

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Sistema​ ​de​ ​diseño.​ ​Botones​ ​y​ ​toolbars
En​ ​la​ ​imagen​ ​podemos​ ​ver​ ​el​ ​sistema​ ​aplicado​ ​a​ ​los​ ​botones​ ​y​ ​toolbar​ ​en​ ​Velneo.

Para​ ​la​ ​aplicación​ ​del​ ​estilo​ ​de​ ​botones​ ​utilizamos​ ​la​ ​siguiente​ ​CSS:

QPushButton​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​#FFFFFF;

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#E0E0E0;

​ ​​ ​​ ​​ ​border-radius:​ ​5px;

​ ​​ ​​ ​​ ​color:​ ​#212121;

​ ​​ ​​ ​​ ​font-size:​ ​12px;

​ ​​ ​​ ​​ ​height:​ ​30px;

​ ​​ ​​ ​​ ​line-height:​ ​16px;

​ ​​ ​​ ​​ ​text-align:​ ​center;

​ ​​ ​​ ​​ ​qproperty-iconSize:​ ​18px;​ ​}

QPushButton:hover​ ​{

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#3F51B5;​ ​}

QPushButton:focus​ ​{

​ ​​ ​​ ​​ ​border:​ ​2px​ ​solid​ ​#3F51B5;​ ​}

QPushButton:pressed​ ​{

​ ​​ ​​ ​​ ​border:​ ​2px​ ​solid​ ​#3F51B5;​ ​}

81

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

QPushButton:disabled​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​#9E9E9E;

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#9E9E9E;

​ ​​ ​​ ​​ ​color:​ ​​ ​#FFF;​ ​}

QPushButton::menu-indicator​ ​{

​ ​​ ​​ ​​ ​image:​ ​none;

​ ​​ ​​ ​​ ​width:​ ​0px;​ ​}

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​hay​ ​botones​ ​con​ ​una​ ​CSS​ ​diferente​ ​como​ ​el​ ​caso​ ​de​ ​botón​ ​de​ ​llamada​ ​a​ ​la
acción​ ​“CTA”​ ​o​ ​de​ ​atención​ ​“ATN”​ ​:

QPushButton#BTN_ACE​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​#3F51B5;

​ ​​ ​​ ​​ ​color:​ ​#FFF;​ ​}

QPushButton:hover#BTN_ACE​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​#FFFFFF;

​ ​​ ​​ ​​ ​color:​ ​#3F51B5;​ ​}

QPushButton:focus#BTN_ACE​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​#FFFFFF;

​ ​​ ​​ ​​ ​color:​ ​#3F51B5;​ ​}

QPushButton:pressed#BTN_ACE​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​#3F51B5;

​ ​​ ​​ ​​ ​color:​ ​#FFF;​ ​}

QPushButton:disabled#BTN_ACE​ ​{

​ ​​ ​​ ​​ ​color:​ ​​ ​#727272;​ ​}

Para​ ​la​ ​aplicación​ ​del​ ​estilo​ ​de​ ​las​ ​toolbar​ ​utilizamos​ ​la​ ​siguiente​ ​CSS:

QToolBar​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​transparent;

​ ​​ ​​ ​​ ​border:​ ​0px;

​ ​​ ​​ ​​ ​padding:​ ​3px;

​ ​​ ​​ ​​ ​spacing:​ ​10px;

​ ​​ ​​ ​​ ​qproperty-iconSize:​ ​18px;​ ​}

QToolButton​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​#FFF;

82

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#E0E0E0;

​ ​​ ​​ ​​ ​border-radius:​ ​5px;

​ ​​ ​​ ​​ ​color:​ ​#727272;

​ ​​ ​​ ​​ ​margin-right:​ ​1px;

​ ​​ ​​ ​​ ​min-height:​ ​18px;

​ ​​ ​​ ​​ ​min-width:​ ​18px;

​ ​​ ​​ ​​ ​padding:​ ​5px;

​ ​​ ​​ ​​ ​qproperty-iconSize:​ ​18px;​ ​}

QToolButton:hover​ ​{

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#3F51B5;

​ ​​ ​​ ​​ ​border-radius:​ ​5px;​ ​}

QToolButton:focus​ ​{

​ ​​ ​​ ​​ ​border:​ ​2px​ ​solid​ ​#3F51B5;

​ ​​ ​​ ​​ ​border-radius:​ ​5px;​ ​}

QToolButton:disabled​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​#CECECE;

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#727272;

​ ​​ ​​ ​​ ​color:​ ​#727272;​ ​}

QToolButton:pressed​ ​{

​ ​​ ​​ ​​ ​border:​ ​2px​ ​solid​ ​#3F51B5;

​ ​​ ​​ ​​ ​border-radius:​ ​5px;​ ​}

QToolButton::menu-indicator​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​transparent;

​ ​​ ​​ ​​ ​color:​ ​transparent;​ ​}

Sistema​ ​de​ ​diseño.​ ​Etiquetas
Las​ ​etiquetas​ ​suelen​ ​representarse​ ​con​ ​controles​ ​de​ ​tipo​ ​texto​ ​estático.​ ​Su​ ​tamaño​ ​viene​ ​predefinido​ ​por​ ​la
unidad​ ​de​ ​referencia​ ​y​ ​sus​ ​colores​ ​por​ ​la​ ​paleta​ ​del​ ​sistema.

A​ ​continuación​ ​vemos​ ​las​ ​CSS​ ​que​ ​se​ ​utilizan​ ​para​ ​aplicar​ ​el​ ​sistema:

83

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

QLabel​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​transparent;

​ ​​ ​​ ​​ ​color:​ ​#757575;

​ ​​ ​​ ​​ ​font-size:​ ​11px;​ ​}

¿Cuál​ ​es​ ​la​ ​clase​ ​para​ ​cada​ ​tipo​ ​de​ ​objeto,​ ​control​ ​o​ ​subcontrol?
Cada​ ​objeto,​ ​subobjeto​ ​o​ ​control​ ​puede​ ​disponer​ ​de​ ​una​ ​clase​ ​en​ ​el​ ​CSS​ ​que​ ​nos​ ​permite​ ​alterar​ ​su​ ​estilo
visual.​ ​A​ ​continuación​ ​se​ ​relacionan​ ​las​ ​clases​ ​de​ ​Qt​ ​o​ ​propias​ ​de​ ​Velneo​ ​más​ ​utilizadas.

Clase​ ​CSS Objeto,​ ​control​ ​o​ ​subcontrol

QCheckBox Botón​ ​check

QComboBox Combobox

QDateEdit Caja​ ​de​ ​edición​ ​de​ ​campo​ ​fecha

QDateTime Caja​ ​de​ ​visualización​ ​de​ ​campo​ ​fecha​ ​y​ ​hora

QDateTimeEdit Caja​ ​de​ ​edición​ ​de​ ​campo​ ​fecha​ ​y​ ​hora

QDialog Ventana​ ​en​ ​cuadro​ ​de​ ​diálogo

QDockWidget Dock

QDoubleSpinBox Caja​ ​de​ ​edición​ ​de​ ​campo​ ​numérico​ ​con​ ​botones​ ​arriba​ ​y​ ​abajo

QFrame Marco

QGroupBox Caja​ ​de​ ​grupo

QHeaderView Cabecera​ ​de​ ​rejillas​ ​y​ ​árboles

QLabel Etiqueta​ ​de​ ​texto

QLineEdit Caja​ ​de​ ​edición​ ​de​ ​texto​ ​en​ ​una​ ​línea

QMainWindow Ventana​ ​principal

QMenu Menú​ ​contextual

QMenuBar Barra​ ​de​ ​menú​ ​(solo​ ​afecta​ ​a​ ​Windows)

QMessageBox Ventana​ ​de​ ​mensaje

QNumberSpinBox Caja​ ​de​ ​edición​ ​de​ ​campo​ ​numérico​ ​con​ ​botones​ ​arriba​ ​y​ ​abajo

QProgressBar Barra​ ​de​ ​progreso

QPushButton Botón

QRadioButton Botón​ ​de​ ​radio

QScrollBar Barra​ ​de​ ​scroll​ ​vertical​ ​y​ ​horizontal

84

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

QSlider Deslizador

QSpinBox Caja​ ​de​ ​edición​ ​de​ ​campo​ ​numérico​ ​con​ ​un​ ​botón

QSplitter Splitter

QStatusBar Barra​ ​de​ ​estado

QTabWidget Separador​ ​de​ ​formularios​ ​(pestañas)

QTableView Rejilla

QTextEdit Caja​ ​de​ ​edición​ ​de​ ​texto​ ​multilínea

QTimeEdit Caja​ ​de​ ​edición​ ​de​ ​hora

QToolBar Barra​ ​de​ ​herramientas

QTooltip Tooltip

QTreeView Árbol​ ​visor​ ​de​ ​tabla​ ​y​ ​menú​ ​arbolado

QWidget#qt_calendar Calendario

VBoundFieldEdit Caja​ ​de​ ​edición​ ​de​ ​campo​ ​puntero​ ​a​ ​maestro

VCFootView Pie​ ​de​ ​rejilla

VListBox Listbox

Aplicar​ ​propiedades​ ​en​ ​las​ ​CSS
Una​ ​de​ ​las​ ​características​ ​especiales​ ​de​ ​las​ ​CSS​ ​de​ ​Qt​ ​usadas​ ​en​ ​Velneo​ ​es​ ​que​ ​podemos​ ​aplicar​ ​algunas
propiedades​ ​de​ ​los​ ​controles​ ​u​ ​objetos​ ​directamente​ ​en​ ​la​ ​CSS.​ ​Esto​ ​nos​ ​permite​ ​cambiar​ ​el
comportamiento​ ​del​ ​control​ ​de​ ​forma​ ​genérica​ ​sin​ ​programación​ ​adicional,​ ​directamente​ ​en​ ​la​ ​hoja​ ​de
estilo.​ ​A​ ​continuación​ ​vemos​ ​algunos​ ​ejemplos:

Fijamos​ ​el​ ​texto​ ​a​ ​mostrar​ ​en​ ​el​ ​control​ ​cuando​ ​no​ ​tenga​ ​contenido.

QLineEdit#TXT_BUS​ ​{
​ ​​ ​​ ​​ ​​qproperty-placeholderText:​ ​'Texto​ ​a​ ​buscar';​​ ​}

Fijamos​ ​el​ ​tamaño​ ​del​ ​icono​ ​en​ ​los​ ​botones.

QPushButton​ ​{
​ ​​ ​​ ​​ ​background-color:​ ​#FFFFFF;
​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#E0E0E0;
​ ​​ ​​ ​​ ​border-radius:​ ​5px;
​ ​​ ​​ ​​ ​color:​ ​#212121;
​ ​​ ​​ ​​ ​font-size:​ ​12px;
​ ​​ ​​ ​​ ​height:​ ​30px;
​ ​​ ​​ ​​ ​line-height:​ ​16px;
​ ​​ ​​ ​​ ​text-align:​ ​center;
​ ​​ ​​ ​​ ​​qproperty-iconSize:​ ​18px;​​ ​}

85

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Ocultamos​ ​la​ ​barra​ ​de​ ​estado.

QStatusBar​ ​{
​ ​​ ​​ ​​ ​background-color:​ ​#FFF;
​ ​​ ​​ ​​ ​border-top:​ ​1px​ ​solid​ ​#CECECE;
​ ​​ ​​ ​​ ​​qproperty-visible:​ ​false;​​ ​}

Ocultamos​ ​las​ ​líneas​ ​del​ ​grid​ ​de​ ​rejillas.

QTableView​ ​{
​ ​​ ​​ ​​ ​alternate-background-color:​ ​transparent;
​ ​​ ​​ ​​ ​background-color:​ ​#FFF;
​ ​​ ​​ ​​ ​border:​ ​none;
​ ​​ ​​ ​​ ​border-bottom:​ ​1px​ ​solid​ ​#BDBDBD;
​ ​​ ​​ ​​ ​font-weight:​ ​normal;
​ ​​ ​​ ​​ ​gridline-color:​ ​transparent;
​ ​​ ​​ ​​ ​selection-background-color:​ ​#3F51B5;
​ ​​ ​​ ​​ ​selection-color:​ ​#FFF;
​ ​​ ​​ ​​ ​​qproperty-showGrid:​ ​false;​​ ​}

Ocultamos​ ​las​ ​líneas​ ​del​ ​grid​ ​en​ ​el​ ​calendario.

QWidget#qt_calendar_navigationbar​ ​{
​ ​​ ​​ ​​ ​background-color:​ ​#CECECE;
​ ​​ ​​ ​​ ​​qproperty-gridVisible:​ ​false;​​ ​}

Fijamos​ ​el​ ​icono​ ​que​ ​se​ ​visualizará​ ​en​ ​el​ ​botón​ ​de​ ​siguiente​ ​mes​ ​del​ ​calendario.

QWidget#qt_calendar_nextmonth​ ​{
​ ​​ ​​ ​​ ​background:​ ​#CECECE;
​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#CECECE;
​ ​​ ​​ ​​ ​​qproperty-icon:​ ​url(SENDA_ICONOS_DER.png);​​ ​}

Aplicar​ ​iconos​ ​en​ ​las​ ​CSS
Las​ ​CSS​ ​nos​ ​permiten​ ​aplicar​ ​iconos​ ​en​ ​algunos​ ​de​ ​sus​ ​controles.​ ​Esto​ ​nos​ ​proporciona​ ​dinamismo​ ​y
grandes​ ​posibilidades​ ​de​ ​personalización​ ​de​ ​la​ ​aplicación​ ​directamente​ ​aplicadas​ ​en​ ​la​ ​CSS.​ ​En​ ​el​ ​caso​ ​de
los​ ​iconos​ ​tenemos​ ​la​ ​posibilidad​ ​de​ ​indicar​ ​una​ ​URL​ ​para​ ​mostrar​ ​imágenes​ ​e​ ​iconos,​ ​por​ ​lo​ ​tanto​ ​estas
imágenes​ ​podrían​ ​estar​ ​en​ ​un​ ​Internet​ ​o​ ​en​ ​local.

Es​ ​más​ ​óptimo​ ​disponer​ ​de​ ​las​ ​imágenes​ ​en​ ​local.​ ​Por​ ​ese​ ​motivo​ ​hemos​ ​implementado​ ​en​ ​las​ ​CSS​ ​una
senda​ ​virtual​ ​basada​ ​en​ ​un​ ​texto​ ​que​ ​reemplazaremos​ ​por​ ​la​ ​senda​ ​real​ ​en​ ​disco​ ​más​ ​el​ ​nombre​ ​de​ ​la
imagen​ ​e​ ​icono.​ ​Vemos​ ​ejemplos​ ​de​ ​la​ ​CSS​ ​aplicando​ ​los​ ​iconos​ ​a​ ​diferentes​ ​botones.

En​ ​este​ ​ejemplo​ ​podemos​ ​apreciar​ ​como​ ​podemos​ ​utilizar​ ​la​ ​coma​ ​como​ ​separador​ ​de​ ​múltiples​ ​controles
a​ ​los​ ​que​ ​vamos​ ​a​ ​aplicar​ ​la​ ​misma​ ​CSS,​ ​igual​ ​que​ ​sucede​ ​en​ ​las​ ​CSS​ ​de​ ​las​ ​páginas​ ​web.

QDateEdit::up-button,​ ​QDateTime::up-button,​ ​QDateTimeEdit::up-button,
QTimeEdit::up-button,​ ​VBoundFieldEditBrowser::up-button,​ ​VBoundFieldEdit::up-button​ ​{
​ ​​ ​​ ​​ ​border:​ ​none;
​ ​​ ​​ ​​ ​​image:​ ​url(SENDA_ICONOS_ARR.png);​​ ​}

86

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

QDateEdit::down-button,​ ​QDateTime::down-button,​ ​QDateTimeEdit::down-button,
QTimeEdit::down-button,​ ​VBoundFieldEditBrowser::down-button,
VBoundFieldEdit::down-button​ ​{
​ ​​ ​​ ​​ ​border:​ ​none;
​ ​​ ​​ ​​ ​​image:​ ​url(SENDA_ICONOS_ABA.png);​​ ​}

QComboBox::drop-down,​ ​QDateEdit::drop-down,​ ​QDateTime::drop-down,
QDateTimeEdit::drop-down,​ ​VBoundFieldEditBrowser::drop-down,
VBoundFieldEdit::drop-down,​ ​QTimeEdit::drop-down​ ​{
​ ​​ ​​ ​​ ​border:​ ​none;
​ ​​ ​​ ​​ ​​image:​ ​url(SENDA_ICONOS_ABA.png);
​ ​​ ​​ ​​ ​width:​ ​13px;​ ​}

QNumberSpinBox:up-button,​ ​QDoubleSpinBox:up-button,​ ​QSpinBox:up-button​ ​{
​ ​​ ​​ ​​ ​border:​ ​none;
​ ​​ ​​ ​​ ​​image:​ ​url(SENDA_ICONOS_ARR.png);​​ ​}

QNumberSpinBox:down-button,​ ​QDoubleSpinBox:down-button,​ ​QSpinBox:down-button​ ​{
​ ​​ ​​ ​​ ​border:​ ​none;
​ ​​ ​​ ​​ ​​image:​ ​url(SENDA_ICONOS_ABA.png);​​ ​}

A​ ​partir​ ​de​ ​esta​ ​CSS,​ ​la​ ​técnica​ ​que​ ​utilizamos​ ​para​ ​aplicar​ ​ese​ ​icono​ ​es​ ​la​ ​siguiente.​ ​Al​ ​arrancar​ ​la
aplicación​ ​descargamos​ ​los​ ​iconos​ ​que​ ​tenemos​ ​como​ ​objeto​ ​dibujo​ ​en​ ​nuestra​ ​aplicación.​ ​No​ ​es
necesario​ ​utilizar​ ​ficheros​ ​adjuntos.​ ​Estas​ ​imágenes​ ​o​ ​iconos​ ​se​ ​descargan​ ​al​ ​directorio​ ​caché​ ​del​ ​client
que​ ​nos​ ​garantiza​ ​acceso​ ​con​ ​capacidad​ ​de​ ​lectura​ ​y​ ​escritura.

A​ ​la​ ​hora​ ​de​ ​aplicar​ ​la​ ​CSS​ ​hacemos​ ​la​ ​sustitución​ ​del​ ​texto​ ​​SENDA_ICONOS_​​ ​por​ ​la​ ​senda​ ​real​ ​del​ ​usuario
sysCacheClientPath​.

87

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Aplicar​ ​a​ ​controles​ ​con​ ​identificadores​ ​específicos
Otra​ ​de​ ​las​ ​virtudes​ ​de​ ​las​ ​CSS​ ​es​ ​que​ ​además​ ​de​ ​poder​ ​hacer​ ​cambios​ ​generales​ ​a​ ​toda​ ​la​ ​aplicación
también​ ​nos​ ​permite​ ​aplicar​ ​cambios​ ​específicos​ ​a​ ​controles​ ​concretos.​ ​Aquí​ ​cobra​ ​mayor​ ​relevancia​ ​el
ser​ ​estrictos​ ​en​ ​la​ ​aplicación​ ​de​ ​los​ ​mismo​ ​identificadores​ ​para​ ​los​ ​mismos​ ​controles​ ​en​ ​todos​ ​los​ ​objetos.
De​ ​esta​ ​forma​ ​podemos​ ​conseguir:

Aplicar​ ​el​ ​texto​ ​“Texto​ ​a​ ​buscar”​ ​solo​ ​en​ ​los​ ​controles​ ​cuya​ ​identificador​ ​sea​ ​​TXT_BUS​,​ ​que​ ​normalmente​ ​se
utiliza​ ​en​ ​los​ ​menús.

QLineEdit#TXT_BUS​​ ​{

​ ​​ ​​ ​​ ​qproperty-placeholderText:​ ​'Texto​ ​a​ ​buscar';​ ​}

Aplicar​ ​un​ ​estilo​ ​diferente​ ​a​ ​los​ ​botones​ ​ampliar,​ ​reducir,​ ​buscar​ ​y​ ​menú.

/*​ ​BOTÓN​ ​AMPLIAR,​ ​BOTÓN​ ​BUSCAR,​ ​BOTÓN​ ​MENU​ ​y​ ​BOTÓN​ ​REDUCIR​ ​*/

QPushButton#BTN_AMP,​ ​QPushButton#BTN_BUS,​ ​QPushButton#BTN_MEN,​ ​QPushButton#BTN_RED​​ ​{

​ ​​ ​​ ​​ ​background-color:​ ​transparent;

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#E0E0E0;

​ ​​ ​​ ​​ ​border-radius:​ ​5px;

​ ​​ ​​ ​​ ​qproperty-iconSize:​ ​18px;​ ​}

Aplicar​ ​un​ ​estilo​ ​diferente​ ​a​ ​los​ ​botones​ ​ampliar,​ ​reducir,​ ​buscar​ ​y​ ​menú​ ​cuando​ ​el​ ​ratón​ ​está​ ​encima,​ ​gana
el​ ​foco,​ ​está​ ​presionado​ ​o​ ​desactivado.

QPushButton:hover#BTN_AMP,​ ​QPushButton:hover#BTN_BUS,​ ​QPushButton:hover#BTN_MEN,

QPushButton:hover#BTN_RED​​ ​{

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#3F51B5;​ ​}

QPushButton:focus#BTN_AMP,​ ​QPushButton:focus#BTN_BUS,​ ​QPushButton:focus#BTN_MEN,

QPushButton:focus#BTN_RED​​ ​{

​ ​​ ​​ ​​ ​border:​ ​2px​ ​solid​ ​#3F51B5;​ ​}

QPushButton:pressed#BTN_AMP,​ ​QPushButton:pressed#BTN_BUS,​ ​QPushButton:pressed#BTN_MEN,

QPushButton:pressed#BTN_RED​​ ​{

​ ​​ ​​ ​​ ​border:​ ​2px​ ​solid​ ​#3F51B5;​ ​}

QPushButton:disabled#BTN_AMP,​ ​QPushButton:disabled#BTN_BUS,

QPushButton:disabled#BTN_MEN,​ ​QPushButton:disabled#BTN_RED​​ ​{

​ ​​ ​​ ​​ ​border:​ ​1px​ ​solid​ ​#9E9E9E;​ ​}

Aplicar​ ​un​ ​tamaño​ ​fijo​ ​a​ ​determinados​ ​controles,​ ​en​ ​este​ ​caso​ ​los​ ​botones​ ​aceptar,​ ​cancelar,​ ​suprimir​ ​y
opciones.​ ​Esto​ ​por​ ​ejemplo​ ​nos​ ​permite​ ​aplicar​ ​nuestro​ ​sistema​ ​con​ ​la​ ​unidad​ ​de​ ​referencia​ ​de​ ​120x30
incluso​ ​aunque​ ​no​ ​cambiemos​ ​el​ ​control​ ​en​ ​los​ ​formularios,​ ​lo​ ​que​ ​supone​ ​un​ ​importante​ ​ahorro​ ​de
tiempo.

88

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

/*​ ​BOTÓN​ ​CON​ ​TAMAÑO​ ​FIJO​ ​*/

QPushButton#BTN_ACE,​ ​QPushButton#BTN_CNC,​ ​QPushButton#BTN_SUP,​ ​QPushButton#BTN_OPC​​ ​{

​ ​​ ​​ ​​ ​width:​ ​120px;​ ​}

89

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Codificación
La​ ​principal​ ​labor​ ​de​ ​un​ ​desarrollador​ ​es​ ​escribir​ ​buen​ ​código.​ ​Las​ ​mejores​ ​aplicaciones​ ​siempre​ ​tienen
bajo​ ​el​ ​capó​ ​buen​ ​código.​ ​No​ ​es​ ​posible​ ​construir​ ​buenas​ ​aplicaciones,​ ​con​ ​buena​ ​nota​ ​en​ ​funcionalidad,
usabilidad​ ​y​ ​rendimiento​ ​escribiendo​ ​mal​ ​código.

Cuando​ ​estamos​ ​escribiendo​ ​código​ ​debemos​ ​ser​ ​conscientes​ ​de​ ​que​ ​ese​ ​código​ ​debe​ ​durar​ ​muchos
años,​ ​en​ ​ocasiones​ ​decenas​ ​de​ ​años.​ ​Además,​ ​ese​ ​código​ ​va​ ​a​ ​ser​ ​mantenido​ ​por​ ​nosotros​ ​mismos​ ​o​ ​por
otros​ ​desarrolladores.​ ​Por​ ​lo​ ​tanto​ ​debemos​ ​mimarlo​ ​para​ ​que​ ​sea​ ​fácil​ ​de​ ​entender,​ ​mantener​ ​y​ ​mejorar.

Por​ ​estos​ ​motivos​ ​no​ ​debemos​ ​correr​ ​a​ ​la​ ​hora​ ​de​ ​escribir​ ​código​ ​y​ ​debemos​ ​emplear​ ​el​ ​tiempo​ ​necesario
para​ ​hacer​ ​un​ ​buen​ ​naming,​ ​buenos​ ​comentarios​ ​y​ ​código​ ​de​ ​calidad.​ ​A​ ​igualdad​ ​de​ ​rendimiento​ ​el​ ​mejor
código​ ​es​ ​el​ ​más​ ​sencillo​ ​de​ ​entender​ ​y​ ​mantener.

Usa​ ​una​ ​descripción​ ​del​ ​objeto​ ​clara,​ ​precisa​ ​y​ ​lo​ ​más​ ​breve​ ​posible
En​ ​la​ ​codificación​ ​todo​ ​es​ ​importante,​ ​pero​ ​para​ ​facilitar​ ​su​ ​legibilidad​ ​debemos​ ​escribir​ ​buenas
descripciones​ ​de​ ​objetos​ ​que​ ​nos​ ​faciliten​ ​entender​ ​que​ ​hace​ ​el​ ​objeto​ ​o​ ​para​ ​que​ ​ha​ ​sido​ ​creado,
utilizando​ ​el​ ​menor​ ​número​ ​de​ ​palabras​ ​posibles.

Tras​ ​copiar​ ​un​ ​objeto​ ​el​ ​siguiente​ ​paso​ ​debería​ ​ser​ ​modificar​ ​su​ ​descripción,​ ​cuando​ ​no​ ​lo​ ​hacemos​ ​nos
con​ ​objetos​ ​que​ ​teniendo​ ​diferentes​ ​identificadores​ ​tienen​ ​la​ ​misma​ ​descripción​ ​lo​ ​que​ ​dificulta​ ​su
mantenibilidad.

Comenta​ ​bien​ ​tu​ ​código
Un​ ​código​ ​sin​ ​comentarios​ ​nos​ ​obliga​ ​a​ ​leer​ ​todo​ ​el​ ​código​ ​para​ ​entender​ ​qué​ ​hace.​ ​Además​ ​de​ ​ser​ ​más
lento​ ​para​ ​el​ ​programador​ ​que​ ​lo​ ​mantiene,​ ​es​ ​muy​ ​fácil​ ​que​ ​no​ ​se​ ​llegue​ ​a​ ​conclusiones​ ​acertadas​ ​ya​ ​que
no​ ​siempre​ ​es​ ​obvio​ ​todo​ ​lo​ ​que​ ​se​ ​programa.​ ​Por​ ​este​ ​motivo​ ​es​ ​muy​ ​importante​ ​comentar​ ​código​ ​y,
sobre​ ​todo​ ​comentarlo​ ​bien.

Comentar​ ​bien​ ​el​ ​código​ ​implica​ ​no​ ​escribir​ ​comentarios​ ​obvios​ ​que​ ​no​ ​aportan​ ​valor,​ ​ni​ ​comentarios​ ​tan
extensos​ ​que​ ​cuesta​ ​lo​ ​mismo​ ​leerlos​ ​que​ ​leer​ ​e​ ​interpretar​ ​el​ ​código.​ ​Un​ ​buen​ ​comentario​ ​debe​ ​ser
preciso,​ ​conciso​ ​y​ ​estar​ ​ubicado​ ​en​ ​el​ ​lugar​ ​adecuado.

Todo​ ​proceso,​ ​función​ ​o​ ​manejador​ ​de​ ​evento​ ​debería​ ​comenzar​ ​con​ ​un​ ​comentario​ ​que​ ​describa​ ​lo​ ​que
hace.​ ​Es​ ​cierto​ ​que​ ​es​ ​redundante​ ​en​ ​muchos​ ​casos​ ​con​ ​la​ ​propiedad​ ​descripción​ ​de​ ​propio​ ​objeto,​ ​pero
debemos​ ​entender​ ​que​ ​no​ ​siempre​ ​tenemos​ ​a​ ​la​ ​vista​ ​el​ ​código​ ​y​ ​sus​ ​propiedades,​ ​por​ ​eso​ ​es​ ​importante
disponer​ ​del​ ​comentario​ ​en​ ​el​ ​inicio​ ​del​ ​código.

Aplica​ ​el​ ​mismo​ ​estilo​ ​de​ ​comentarios​ ​en​ ​todo​ ​el​ ​código
En​ ​un​ ​equipo​ ​de​ ​desarrollo​ ​no​ ​hay​ ​nada​ ​mejor​ ​que​ ​conseguir​ ​que​ ​todos​ ​los​ ​programadores​ ​escriban​ ​el
código​ ​aplicando​ ​los​ ​mismos​ ​criterios​ ​para​ ​el​ ​naming,​ ​descripciones,​ ​comentarios​ ​y​ ​codificación.​ ​Con​ ​el
fin​ ​de​ ​facilitar​ ​esta​ ​homogeneidad​ ​es​ ​conveniente​ ​disponer​ ​de​ ​un​ ​estilo​ ​de​ ​comentarios.​ ​A​ ​continuación​ ​se
describe​ ​un​ ​estilo​ ​sencillo​ ​y​ ​fácil​ ​de​ ​recordar.​ ​A​ ​continuación​ ​se​ ​muestra​ ​un​ ​ejemplo​ ​de​ ​cómo​ ​queda​ ​el
código​ ​aplicando​ ​el​ ​estilo​ ​de​ ​comentarios.

90

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Criterios​ ​base​ ​para​ ​aplicar​ ​a​ ​los​ ​comentarios​ ​y​ ​algunas​ ​matizaciones
Los​ ​criterios​ ​base​ ​a​ ​aplicar​ ​son​ ​los​ ​siguientes:

● Los​ ​comentarios​ ​se​ ​escriben​ ​con​ ​líneas​ ​aplicando​ ​el​ ​comando​ ​​Rem​.
● Las​ ​líneas​ ​de​ ​comentarios​ ​se​ ​“comentarán”​ ​para​ ​que​ ​queden​ ​de​ ​color​ ​verde​ ​destacando​ ​del​ ​resto

del​ ​código​ ​y​ ​evitando​ ​su​ ​evaluación​ ​en​ ​ninguna​ ​circunstancia.
● Si​ ​el​ ​texto​ ​del​ ​comentario​ ​es​ ​muy​ ​largo​ ​y​ ​no​ ​se​ ​ve​ ​por​ ​completo​ ​en​ ​pantalla​ ​se​ ​dividirá​ ​en​ ​varias

líneas​ ​​Rem​.
● Las​ ​separaciones​ ​de​ ​código​ ​o​ ​comentarios​ ​se​ ​conseguirán​ ​empleando​ ​líneas​ ​libre​ ​antes​ ​de​ ​la​ ​línea

de​ ​comentario​ ​​Rem​.
● Las​ ​líneas​ ​libres​ ​también​ ​se​ ​“comentarán”​ ​para​ ​facilitar​ ​su​ ​lectura​ ​y​ ​creación​ ​del​ ​concepto​ ​de

bloque.

Sobre​ ​estos​ ​criterios​ ​base​ ​debemos​ ​tener​ ​en​ ​cuenta​ ​diferentes​ ​excepciones​ ​o​ ​matizaciones​ ​a​ ​la​ ​hora​ ​de
aplicarlos​ ​en​ ​función​ ​de​ ​la​ ​localización.

A​ ​vamos​ ​a​ ​reparar​ ​los​ ​diferentes​ ​tipo​ ​de​ ​líneas​ ​de​ ​comentarios​ ​que​ ​espero​ ​te​ ​resulten​ ​lógicos​ ​y​ ​fácil​ ​es​ ​de
aplicar​ ​si​ ​deseas​ ​usarlos​ ​en​ ​tu​ ​código.

91

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Comentario​ ​de​ ​inicio​ ​de​ ​código
Es​ ​conveniente​ ​que​ ​el​ ​código​ ​comience​ ​con​ ​una​ ​descripción​ ​general​ ​del​ ​mismo.​ ​En​ ​muchos​ ​casos​ ​puede
coincidir​ ​con​ ​la​ ​descripción​ ​del​ ​objeto:​ ​proceso,​ ​función,​ ​manejador​ ​de​ ​evento,​ ​etc.

Esta​ ​línea​ ​​Rem​​ ​no​ ​requiere​ ​ninguna​ ​línea​ ​libre​ ​anterior​ ​ni​ ​posterior.

Comentario​ ​de​ ​log​ ​de​ ​cambios
Si​ ​el​ ​cambio​ ​de​ ​un​ ​código​ ​requiere​ ​ser​ ​documentado​ ​y​ ​declarado​ ​de​ ​forma​ ​explícita​ ​se​ ​añadirá​ ​tras​ ​el
comentario​ ​descriptivo​ ​de​ ​inicio​ ​de​ ​código​ ​una​ ​o​ ​varias​ ​líneas​ ​de​ ​log.​ ​Estas​ ​líneas​ ​estarán​ ​separadas​ ​de​ ​la
descripción​ ​inicial​ ​por​ ​una​ ​línea​ ​libre.

El​ ​formato​ ​de​ ​la​ ​línea​ ​de​ ​log​ ​será:

Aunque​ ​en​ ​Velneo​ ​vERP​ ​no​ ​es​ ​necesario​ ​indicar​ ​el​ ​nombre​ ​o​ ​nick​ ​del​ ​programador,​ ​si​ ​se​ ​considera
importante​ ​para​ ​el​ ​desarrollo​ ​en​ ​equipo​ ​se​ ​aplicará​ ​el​ ​siguiente​ ​formato:

Comentario​ ​antes​ ​del​ ​código​ ​y​ ​después​ ​de​ ​la​ ​descripción
Si​ ​una​ ​vez​ ​añadida​ ​la​ ​línea​ ​​Rem​​ ​de​ ​la​ ​descripción​ ​general​ ​es​ ​necesario​ ​poner​ ​un​ ​comentario​ ​antes​ ​de​ ​la
primera​ ​línea​ ​de​ ​código​ ​se​ ​separarán​ ​ambas​ ​líneas​ ​de​ ​comentarios​ ​por​ ​una​ ​libre.

92

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Comentario​ ​inicial​ ​de​ ​un​ ​nuevo​ ​bloque​ ​en​ ​el​ ​mismo​ ​nivel
Para​ ​conseguir​ ​que​ ​ambos​ ​bloques​ ​de​ ​código​ ​queden​ ​claramente​ ​separados​ ​visualmente​ ​se​ ​aplicará​ ​una
línea​ ​libre​ ​antes​ ​del​ ​comentario​ ​consiguiendo​ ​que​ ​el​ ​espacio​ ​en​ ​blanco​ ​ayude​ ​a​ ​separar​ ​ambos​ ​bloques.

Comentario​ ​en​ ​primera​ ​línea​ ​de​ ​un​ ​bloque​ ​sangrado
Cuando​ ​hay​ ​bloques​ ​de​ ​código​ ​que​ ​se​ ​escriben​ ​con​ ​sangrado​ ​debido​ ​a​ ​comandos​ ​de​ ​instrucción​ ​que
generan​ ​subprocesos​ ​como​ ​ocurre​ ​con​ ​los​ ​comandos​ ​if,​ ​cargar​ ​lista,​ ​recorrer​ ​lista,​ ​etc.​ ​No​ ​será​ ​necesario
poner​ ​una​ ​línea​ ​libre​ ​ya​ ​que​ ​el​ ​sangrado​ ​consigue​ ​el​ ​efecto​ ​de​ ​separación​ ​de​ ​bloques​ ​y​ ​una​ ​línea​ ​libre
genera​ ​demasiada​ ​separación.

En​ ​el​ ​caso​ ​de​ ​los​ ​comando​ ​if,​ ​else​ ​y​ ​elseif​ ​las​ ​líneas​ ​de​ ​sus​ ​subprocesos​ ​si​ ​empiezan​ ​con​ ​un​ ​comentario​ ​lo
harán​ ​siempre​ ​sin​ ​necesidad​ ​de​ ​incluir​ ​anteriormente​ ​una​ ​línea​ ​libre.

Comentario​ ​en​ ​primera​ ​línea​ ​tras​ ​finalizar​ ​un​ ​sangrado
Aunque​ ​la​ ​finalización​ ​de​ ​un​ ​sangrado​ ​ya​ ​genera​ ​separación​ ​visual​ ​del​ ​código,​ ​la​ ​primera​ ​línea​ ​tras
recuperar​ ​el​ ​nivel​ ​de​ ​código​ ​anterior​ ​conviene​ ​que​ ​si​ ​comienza​ ​con​ ​comentario​ ​tenga​ ​una​ ​línea​ ​libre
anterior​ ​ya​ ​que​ ​nos​ ​ayudará​ ​a​ ​comprender​ ​que​ ​existe​ ​código​ ​anterior​ ​al​ ​mismo​ ​nivel.

93

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Comentario​ ​local​ ​a​ ​un​ ​línea​ ​dentro​ ​de​ ​un​ ​bloque
Cuando​ ​un​ ​comentario​ ​se​ ​utilice​ ​para​ ​documentar​ ​la​ ​línea​ ​o​ ​línea​ ​siguientes,​ ​pero​ ​no​ ​a​ ​todas​ ​las​ ​líneas​ ​del
bloque,​ ​este​ ​comentario​ ​no​ ​incluirá​ ​una​ ​línea​ ​libre​ ​anterior,​ ​ya​ ​que​ ​su​ ​función​ ​no​ ​es​ ​separar​ ​bloques​ ​de
código.

No​ ​dejes​ ​líneas​ ​en​ ​blanco
Cuando​ ​editamos​ ​código​ ​en​ ​un​ ​manejador​ ​de​ ​evento,​ ​proceso,​ ​función​ ​o​ ​evento​ ​de​ ​tabla​ ​hay​ ​muchos
programadores​ ​que​ ​tienen​ ​el​ ​hábito​ ​de​ ​añadir​ ​líneas​ ​vacías​ ​para​ ​luego​ ​ir​ ​rellenando​ ​el​ ​código,​ ​eso​ ​está​ ​bien
siempre​ ​y​ ​cuando​ ​una​ ​vez​ ​terminado​ ​de​ ​escribir​ ​el​ ​código​ ​eliminemos​ ​las​ ​líneas​ ​“Libre”​ ​no​ ​comentadas.

El​ ​motivo​ ​de​ ​no​ ​dejar​ ​líneas​ ​libres​ ​es​ ​doble,​ ​por​ ​un​ ​lado​ ​porque​ ​una​ ​línea​ ​no​ ​comentada​ ​se​ ​evalúa​ ​aunque
sea​ ​para​ ​saber​ ​que​ ​no​ ​hay​ ​ningún​ ​comando​ ​de​ ​instrucción​ ​a​ ​ejecutar​ ​y​ ​por​ ​otro​ ​lado​ ​da​ ​la​ ​sensación​ ​de
código​ ​incompleto​ ​no​ ​teniendo​ ​claro​ ​si​ ​el​ ​código​ ​está​ ​terminado​ ​o​ ​queda​ ​algo​ ​por​ ​programar.

94

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

¿Qué​ ​pasa​ ​con​ ​el​ ​código​ ​que​ ​ya​ ​tengo​ ​escrito?
Te​ ​puedes​ ​preguntar​ ​si​ ​merece​ ​la​ ​pena​ ​repasar​ ​todo​ ​el​ ​código​ ​que​ ​ya​ ​tengas​ ​escrito​ ​en​ ​una​ ​aplicación​ ​para
aplicar​ ​un​ ​nuevo​ ​criterio​ ​de​ ​comentarios.​ ​En​ ​principio​ ​no​ ​es​ ​necesario​ ​invertir​ ​ese​ ​tiempo,​ ​pero​ ​lo​ ​que​ ​sí​ ​es
conveniente​ ​es​ ​aplicar​ ​el​ ​nuevo​ ​criterio​ ​cada​ ​vez​ ​que​ ​edites​ ​código​ ​antiguo.​ ​Esto​ ​ayuda​ ​a​ ​saber​ ​que​ ​ese
código​ ​ha​ ​sido​ ​modificado​ ​y​ ​con​ ​el​ ​paso​ ​del​ ​tiempo​ ​podrás​ ​conseguir​ ​que​ ​la​ ​mayoría​ ​de​ ​los​ ​procesos​ ​más
importantes​ ​de​ ​la​ ​aplicación​ ​tengan​ ​el​ ​nuevo​ ​criterio​ ​aplicado.

95

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Procesos
Sin​ ​duda​ ​es​ ​el​ ​objeto​ ​más​ ​poderoso​ ​de​ ​Velneo​ ​a​ ​la​ ​hora​ ​de​ ​crear​ ​funcionalidad​ ​en​ ​nuestras​ ​aplicaciones.
Tiene​ ​la​ ​capacidad​ ​de​ ​ejecutarse​ ​en​ ​cualquier​ ​plano,​ ​admite​ ​cualquier​ ​origen​ ​(ninguno,​ ​ficha​ ​o​ ​lista)​ ​y
cualquier​ ​destino​ ​(ninguno,​ ​ficha​ ​o​ ​lista),​ ​puede​ ​recibir​ ​un​ ​número​ ​ilimitado​ ​de​ ​parámetros​ ​y​ ​además​ ​puede
devolver​ ​cualquier​ ​valor​ ​de​ ​cualquier​ ​variable​ ​local​ ​declarada​ ​en​ ​el​ ​objeto​ ​como​ ​si​ ​se​ ​tratase​ ​de
parámetros​ ​de​ ​retorno.​ ​Tanta​ ​potencia​ ​requiere​ ​control​ ​para​ ​no​ ​hacer​ ​un​ ​mal​ ​uso​ ​de​ ​los​ ​procesos.

Aplica​ ​el​ ​criterio​ ​de​ ​responsabilidad​ ​única
Cuando​ ​estamos​ ​desarrollando​ ​una​ ​funcionalidad​ ​es​ ​fácil​ ​caer​ ​en​ ​la​ ​tentación​ ​de​ ​escribir​ ​un​ ​proceso​ ​largo
que​ ​contiene​ ​toda​ ​la​ ​funcionalidad.​ ​Sin​ ​embargo​ ​esa​ ​es​ ​un​ ​mala​ ​praxis.​ ​Cuando​ ​más​ ​largo​ ​es​ ​un​ ​proceso
más​ ​complicado​ ​es​ ​de​ ​leer,​ ​entender​ ​y​ ​mantener.​ ​Por​ ​ese​ ​motivo​ ​es​ ​conveniente​ ​usar​ ​el​ ​criterio​ ​de
responsabilidad​ ​única.​ ​En​ ​lugar​ ​de​ ​tener​ ​un​ ​mega​ ​proceso​ ​es​ ​mejor:

● Crear​ ​un​ ​proceso​ ​principal​ ​que​ ​se​ ​encargue​ ​de​ ​llamar​ ​a​ ​otros​ ​procesos.
● Cada​ ​uno​ ​de​ ​los​ ​procesos​ ​llamados​ ​debería​ ​realizar​ ​una​ ​único​ ​función.​ ​No​ ​debemos​ ​confundir

función​ ​con​ ​cálculo,​ ​es​ ​decir​ ​un​ ​proceso​ ​puede​ ​calcular​ ​muchos​ ​valores​ ​pero​ ​siempre​ ​que​ ​se
realicen​ ​sobre​ ​la​ ​misma​ ​información.

Tampoco​ ​debemos​ ​caer​ ​en​ ​el​ ​error​ ​opuesto,​ ​es​ ​decir,​ ​atomizar​ ​tanto​ ​nuestros​ ​procesos​ ​que​ ​al​ ​final
tengamos​ ​un​ ​grupo​ ​de​ ​procesos​ ​encadenados​ ​difíciles​ ​de​ ​analizar​ ​y​ ​comprender.​ ​Por​ ​ejemplo,​ ​no​ ​es​ ​fácil
de​ ​mantener​ ​un​ ​proceso​ ​A​ ​que​ ​llama​ ​a​ ​un​ ​proceso​ ​B​ ​que​ ​a​ ​su​ ​vez​ ​llama​ ​a​ ​los​ ​procesos​ ​C1​ ​y​ ​C2​ ​y​ ​cada​ ​uno
de​ ​estos​ ​llamada​ ​otros​ ​procesos.​ ​Esta​ ​jerarquía​ ​de​ ​procesos​ ​hace​ ​complicado​ ​seguirlo​ ​y​ ​mantenerlos.

Por​ ​lo​ ​tanto​ ​nuestro​ ​objetivo​ ​debe​ ​ser​ ​siempre​ ​buscar​ ​el​ ​equilibrio​ ​entre​ ​responsabilidad​ ​única​ ​y​ ​evitar​ ​el
exceso​ ​de​ ​atomización,​ ​para​ ​ellos​ ​podemos​ ​recurrir​ ​a​ ​combinaciones​ ​de​ ​procesos​ ​y​ ​funciones​ ​que​ ​faciliten
la​ ​legibilidad​ ​del​ ​código.

Otro​ ​problema​ ​que​ ​plantea​ ​la​ ​aplicación​ ​de​ ​la​ ​responsabilidad​ ​única​ ​es​ ​la​ ​necesidad​ ​de​ ​pasar​ ​información
de​ ​un​ ​proceso​ ​a​ ​otro,​ ​algo​ ​que​ ​se​ ​evita​ ​cuando​ ​todo​ ​está​ ​en​ ​el​ ​mismo​ ​proceso.​ ​En​ ​este​ ​punto​ ​volvemos​ ​a
repetir​ ​la​ ​palabra​ ​equilibrio,​ ​es​ ​decir​ ​debemos​ ​aplicar​ ​el​ ​criterio​ ​de​ ​responsabilidad​ ​única​ ​cuando​ ​un
proceso​ ​va​ ​a​ ​ser​ ​llamado​ ​por​ ​otros​ ​y​ ​es​ ​mejor​ ​tener​ ​pequeñas​ ​piezas​ ​de​ ​código​ ​que​ ​realizan​ ​funciones
concretas​ ​con​ ​un​ ​bajo​ ​nivel​ ​jerárquico​ ​y​ ​sin​ ​complejidades​ ​a​ ​la​ ​hora​ ​de​ ​pasar​ ​información.

Separa​ ​interfaz​ ​de​ ​proceso
Uno​ ​de​ ​los​ ​aspectos​ ​más​ ​importantes​ ​a​ ​la​ ​hora​ ​de​ ​optimizar​ ​un​ ​proceso​ ​es​ ​separar​ ​la​ ​parte​ ​de​ ​interacción
con​ ​el​ ​usuario​ ​a​ ​través​ ​de​ ​la​ ​interfaz​ ​de​ ​la​ ​aplicación​ ​de​ ​reglas​ ​de​ ​negocio,​ ​cálculos​ ​y​ ​otras​ ​operaciones
transaccionales​ ​automáticas​ ​que​ ​no​ ​requieren​ ​interacción.

El​ ​problema​ ​de​ ​que​ ​todo​ ​esté​ ​junto​ ​es​ ​que​ ​nos​ ​imposibilita​ ​la​ ​ejecución​ ​de​ ​un​ ​proceso​ ​en​ ​3º​ ​plano,
perdiendo​ ​la​ ​posibilidad​ ​de​ ​optimizar​ ​la​ ​parte​ ​de​ ​aplicaciones​ ​de​ ​reglas​ ​de​ ​negocio,​ ​cálculos​ ​y​ ​otras
operaciones​ ​transaccionales.

Por​ ​este​ ​motivo​ ​y​ ​aunque​ ​requiera​ ​algo​ ​más​ ​de​ ​programación​ ​siempre​ ​es​ ​conveniente​ ​tener​ ​separada​ ​en
un​ ​proceso​ ​independiente​ ​la​ ​parte​ ​de​ ​interfaz.​ ​Un​ ​ejemplo​ ​de​ ​buena​ ​práctica​ ​podría​ ​ser​ ​el​ ​siguiente
esquema​ ​de​ ​ejecución:

96

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

● Un​ ​proceso​ ​​LLAMADOR​​ ​lanza​ ​la​ ​interfaz​ ​donde​ ​se​ ​pide​ ​la​ ​información​ ​al​ ​usuario.
● El​ ​proceso​ ​​LLAMADOR​​ ​realiza​ ​las​ ​verificaciones​ ​oportunas​ ​avisando​ ​al​ ​usuario​ ​en​ ​caso​ ​de​ ​error.
● Si​ ​todo​ ​es​ ​correcto​ ​lanza​ ​en​ ​3º​ ​plano​ ​un​ ​proceso​ ​​CALCULADOR​​ ​que​ ​realiza​ ​las​ ​operaciones

transaccionales.
● Al​ ​finalizar​ ​el​ ​proceso​ ​​CALCULADOR​​ ​en​ ​3º​ ​plano​ ​el​ ​proceso​ ​de​ ​interfaz​ ​recupera​ ​la​ ​información

relevante​ ​como​ ​el​ ​estado​ ​final,​ ​errores​ ​en​ ​caso​ ​de​ ​que​ ​los​ ​haya,​ ​registros​ ​creados,​ ​etc.
● El​ ​proceso​ ​​LLAMADOR​​ ​muestra​ ​al​ ​usuario​ ​el​ ​resultado​ ​final​ ​del​ ​proceso​ ​ejecutado.

En​ ​el​ ​ejemplo​ ​anterior​ ​solo​ ​hay​ ​2​ ​procesos​ ​​LLAMADOR​​ ​y​ ​​CALCULADOR​,​ ​el​ ​primero​ ​se​ ​encarga​ ​de​ ​la
interacción​ ​con​ ​el​ ​usuario​ ​a​ ​través​ ​de​ ​la​ ​interfaz​ ​tanto​ ​antes​ ​como​ ​después​ ​de​ ​que​ ​finalice​ ​la​ ​transacción,
mientras​ ​que​ ​el​ ​segundo​ ​proceso​ ​se​ ​ejecuta​ ​de​ ​forma​ ​optimizada​ ​en​ ​el​ ​servidor​ ​ya​ ​que​ ​no​ ​utiliza​ ​nada​ ​de
interfaz.

Este​ ​mismo​ ​esquema​ ​podemos​ ​realizarlo​ ​de​ ​forma​ ​similar​ ​sustituyendo​ ​el​ ​proceso​ ​​LLAMADOR​​ ​por​ ​un
formulario​ ​que​ ​realizar​ ​toda​ ​la​ ​parte​ ​de​ ​interfaz​ ​con​ ​manejadores​ ​de​ ​evento​ ​del​ ​formulario.

Evita​ ​la​ ​complejidad​ ​ciclomática
La​ ​complejidad​ ​ciclomática​ ​es​ ​​una​ ​métrica​ ​del​ ​software​ ​que​ ​proporciona​ ​una​ ​medición​ ​cuantitativa​ ​de
la​ ​complejidad​ ​lógica​ ​de​ ​un​ ​programa.​ ​Es​ ​una​ ​de​ ​las​ ​métricas​ ​de​ ​software​ ​de​ ​mayor​ ​aceptación,​ ​ya
que​ ​ha​ ​sido​ ​concebida​ ​para​ ​ser​ ​independiente​ ​del​ ​lenguaje.

Traducido​ ​a​ ​lenguaje​ ​Velneo​ ​es​ ​un​ ​valor​ ​que​ ​se​ ​calcula​ ​en​ ​base​ ​a​ ​la​ ​cantidad​ ​de​ ​niveles​ ​que​ ​se
establecen​ ​en​ ​un​ ​proceso.​ ​Veamos​ ​un​ ​ejemplo:

Sin​ ​duda​ ​alguna​ ​cuando​ ​vemos​ ​un​ ​proceso​ ​así​ ​no​ ​es​ ​fácil​ ​saber​ ​que​ ​hace​ ​cada​ ​línea​ ​del​ ​proceso​ ​ya​ ​que

97

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

cuando​ ​estamos​ ​en​ ​1º,​ ​2º​ ​o​ ​3º​ ​nivel​ ​de​ ​jerarquía​ ​todavía​ ​podemos​ ​controlarlo,​ ​pero​ ​cuando​ ​los​ ​niveles
siguen​ ​creciendo​ ​nos​ ​obliga​ ​a​ ​leer​ ​todo​ ​el​ ​código​ ​secuencialmente​ ​para​ ​saber​ ​bajo​ ​qué​ ​condiciones​ ​se
ejecuta​ ​las​ ​líneas​ ​de​ ​ese​ ​nivel.

Los​ ​comandos​ ​​if​​ ​y​ ​los​ ​subprocesos​ ​que​ ​generar​ ​muchos​ ​comandos​ ​de​ ​instrucción​ ​nos​ ​añaden
complejidad​ ​ciclomática​ ​a​ ​los​ ​procesos,​ ​por​ ​ese​ ​motivo​ ​debemos​ ​tratar​ ​de​ ​simplificarlos​ ​al​ ​máximo​ ​y​ ​en
estos​ ​casos​ ​aplicar​ ​el​ ​criterio​ ​de​ ​responsabilidad​ ​única​ ​puede​ ​ser​ ​de​ ​gran​ ​ayuda,​ ​así​ ​como​ ​el​ ​uso​ ​de
funciones​ ​que​ ​simplifican​ ​la​ ​lectura​ ​del​ ​código.

Las​ ​verificaciones​ ​primero
Cuando​ ​tenemos​ ​que​ ​hacer​ ​verificaciones​ ​para​ ​decidir​ ​si​ ​vamos​ ​o​ ​no​ ​a​ ​ejecutar​ ​un​ ​parte​ ​del​ ​código​ ​del
proceso,​ ​siempre​ ​que​ ​sea​ ​posible​ ​aplica​ ​el​ ​criterio​ ​de​ ​las​ ​verificaciones​ ​primero​ ​y​ ​en​ ​caso​ ​de​ ​error​ ​finaliza
el​ ​proceso.​ ​Vamos​ ​a​ ​ver​ ​2​ ​ejemplos​ ​de​ ​código​ ​Velneo​ ​que​ ​hacen​ ​lo​ ​mismo​ ​funcionalmente:

El​ ​primero​ ​verifica​ ​y​ ​si​ ​no​ ​hay​ ​error​ ​aceptar​ ​el​ ​formulario:

El​ ​segundo​ ​verifica,​ ​si​ ​hay​ ​error​ ​termina​ ​y​ ​en​ ​caso​ ​contrario​ ​continuar​ ​con​ ​el​ ​proceso​ ​que​ ​también​ ​acepta.

Aunque​ ​ambos​ ​2​ ​hacen​ ​lo​ ​mismo​ ​para​ ​el​ ​usuario​ ​final,​ ​el​ ​primero​ ​tiene​ ​más​ ​complejidad​ ​ciclomática​ ​ya
que​ ​el​ ​aceptar​ ​está​ ​en​ ​un​ ​2º​ ​nivel​ ​dentro​ ​de​ ​un​ ​else,​ ​además​ ​si​ ​mañana​ ​queremos​ ​hacer​ ​algo​ ​más​ ​dentro
del​ ​else​ ​es​ ​posible​ ​que​ ​tengamos​ ​que​ ​crear​ ​más​ ​complejidad​ ​ciclomática​ ​al​ ​crear​ ​un​ ​if​ ​de​ ​2º​ ​nivel.

La​ ​ventaja​ ​del​ ​segundo​ ​código​ ​es​ ​que​ ​verifica​ ​todo​ ​lo​ ​que​ ​tenga​ ​que​ ​verificar​ ​y​ ​si​ ​hay​ ​error​ ​muestra​ ​el
mensaje​ ​y​ ​termina,​ ​y​ ​el​ ​resto​ ​del​ ​proceso​ ​ya​ ​continua​ ​en​ ​el​ ​nivel​ ​principal​ ​sin​ ​ninguna​ ​complejidad
ciclomática,​ ​lo​ ​que​ ​permite​ ​añadir​ ​un​ ​if​ ​en​ ​el​ ​primer​ ​nivel.

98

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Aunque​ ​en​ ​un​ ​proceso​ ​tan​ ​pequeño​ ​no​ ​se​ ​nota​ ​en​ ​exceso​ ​la​ ​diferencia​ ​a​ ​medida​ ​que​ ​hagamos​ ​más​ ​cosas
en​ ​nuestro​ ​proceso​ ​podremos​ ​apreciar​ ​como​ ​verificar​ ​y​ ​finalizar​ ​al​ ​principio​ ​mejora​ ​la​ ​legibilidad​ ​y
mantenibilidad​ ​de​ ​nuestro​ ​código.

Por​ ​último​ ​habría​ ​una​ ​3º​ ​forma​ ​de​ ​hacerlo​ ​que​ ​aún​ ​resulta​ ​peor

En​ ​este​ ​último​ ​ejemplo​ ​además​ ​de​ ​crear​ ​más​ ​complejidad​ ​ciclomática​ ​como​ ​en​ ​el​ ​primer​ ​ejemplo,​ ​emplea
una​ ​lógica​ ​inversa​ ​es​ ​decir,​ ​verifica​ ​si​ ​está​ ​bien​ ​y​ ​entonces​ ​acepta,​ ​pero​ ​en​ ​caso​ ​de​ ​error​ ​hace​ ​la​ ​parte​ ​final
del​ ​código.​ ​Esto​ ​en​ ​un​ ​proceso​ ​corto​ ​todavía​ ​se​ ​puede​ ​llegar​ ​a​ ​leer,​ ​pero​ ​si​ ​el​ ​proceso​ ​ocupa​ ​más​ ​de​ ​lo​ ​que
se​ ​ve​ ​en​ ​pantalla​ ​al​ ​abrir​ ​el​ ​editor​ ​sería​ ​muy​ ​complicado​ ​deducir​ ​que​ ​en​ ​la​ ​parte​ ​final​ ​del​ ​código​ ​hay​ ​un
mensaje​ ​de​ ​error​ ​correspondiente​ ​a​ ​una​ ​verificación.

En​ ​definitiva,​ ​primero​ ​verificamos​ ​todo​ ​lo​ ​necesario​ ​y​ ​si​ ​todo​ ​está​ ​correcto​ ​ejecutamos​ ​la​ ​transacción.​ ​De
esta​ ​forma​ ​evitamos​ ​la​ ​mala​ ​de​ ​idea​ ​de​ ​primero​ ​transacciono​ ​y​ ​si​ ​algo​ ​ha​ ​ido​ ​mal​ ​deshago​ ​transacción.

¿Cuándo​ ​es​ ​mejor​ ​un​ ​proceso​ ​que​ ​una​ ​función?
Existen​ ​diferentes​ ​motivos​ ​por​ ​los​ ​que​ ​un​ ​proceso​ ​puede​ ​ser​ ​más​ ​conveniente​ ​que​ ​una​ ​función:

● Cuando​ ​queremos​ ​ejecutar​ ​un​ ​código​ ​con​ ​un​ ​origen​ ​ficha​ ​o​ ​lista.
● Cuando​ ​queremos​ ​recuperar​ ​una​ ​ficha​ ​o​ ​lista​ ​de​ ​retorno.
● Si​ ​queremos​ ​que​ ​el​ ​código​ ​se​ ​puede​ ​ejecutar​ ​en​ ​un​ ​plano​ ​diferente​ ​al​ ​del​ ​código​ ​lanzador.
● Cuando​ ​no​ ​queremos​ ​tener​ ​límite​ ​de​ ​parámetros.
● Cuando​ ​queremos​ ​que​ ​el​ ​orden​ ​de​ ​los​ ​parámetros​ ​no​ ​influya.
● Cuando​ ​queremos​ ​que​ ​existan​ ​parámetros​ ​opcionales​ ​independientemente​ ​de​ ​su​ ​posición.
● Cuando​ ​queremos​ ​poder​ ​recuperar​ ​no​ ​un​ ​único​ ​valor​ ​de​ ​retorno​ ​sino​ ​todos​ ​los​ ​valores​ ​que​ ​sean

necesarios.
● Cuando​ ​queremos​ ​que​ ​el​ ​código​ ​quede​ ​integrado​ ​en​ ​la​ ​transacción​ ​en​ ​curso​ ​aunque​ ​estemos

ejecutando​ ​en​ ​1º​ ​plano.

¿Cuándo​ ​debo​ ​usar​ ​el​ ​comando​ ​​ejecutar​ ​proceso​?
El​ ​comando​ ​de​ ​instrucción​ ​es​ ​más​ ​limitado​ ​que​ ​disparar​ ​objeto,​ ​sin​ ​embargo​ ​cuenta​ ​con​ ​la​ ​ventaja​ ​de​ ​la
sencillez.

● Cuando​ ​ya​ ​estoy​ ​en​ ​el​ ​origen​ ​ficha​ ​o​ ​lista​ ​y​ ​no​ ​necesito​ ​pasarle​ ​parámetros.
● Cuando​ ​necesito​ ​ejecutar​ ​el​ ​proceso​ ​en​ ​2º​ ​plano.

99

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

¿Cuándo​ ​debo​ ​usar​ ​el​ ​comando​ ​​disparar​ ​objeto​​ ​con​ ​un​ ​proceso?
El​ ​comando​ ​disparar​ ​objeto​ ​requiere​ ​más​ ​líneas​ ​de​ ​código​ ​que​ ​ejecutar​ ​proceso​ ​sin​ ​embargo​ ​cuenta​ ​con
ventajas​ ​funcionales​ ​que​ ​nos​ ​motivan​ ​a​ ​usarlo​ ​cuando:

● Cuando​ ​quiero​ ​pasarle​ ​parámetros​ ​al​ ​proceso.
● Cuando​ ​necesito​ ​recuperar​ ​parámetros​ ​o​ ​valores​ ​calculados​ ​en​ ​el​ ​proceso​ ​ejecutado.

100

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Funciones
La​ ​función​ ​es​ ​un​ ​contenedor​ ​de​ ​código​ ​sin​ ​origen.​ ​Podríamos​ ​decir​ ​que​ ​una​ ​función​ ​es​ ​como​ ​un​ ​proceso
sin​ ​origen,​ ​pero​ ​la​ ​gran​ ​diferencia​ ​es​ ​que​ ​mientras​ ​el​ ​proceso​ ​puede​ ​ser​ ​ejecutado​ ​desde​ ​una​ ​acción,​ ​otro
proceso,​ ​función,​ ​manejador​ ​o​ ​trigger,​ ​la​ ​función​ ​se​ ​puede​ ​ejecutar​ ​en​ ​cualquier​ ​fórmula​ ​lo​ ​que​ ​le​ ​da​ ​una
potencia​ ​de​ ​ejecución​ ​que​ ​no​ ​tiene​ ​el​ ​proceso.​ ​Podríamos​ ​que​ ​una​ ​función​ ​puede​ ​ser​ ​ejecutada​ ​en
cualquier​ ​ámbito​ ​de​ ​nuestra​ ​aplicación.

Acorta​ ​código
Uno​ ​de​ ​sus​ ​usos​ ​más​ ​interesantes​ ​es​ ​la​ ​posibilidad​ ​de​ ​evitar​ ​código​ ​repetido.​ ​Una​ ​función​ ​permite​ ​lanzar
código​ ​pasándole​ ​parámetros​ ​para​ ​que​ ​ejecute​ ​una​ ​funcionalidad​ ​retornando​ ​un​ ​valor​ ​que​ ​podemos
capturar​ ​para​ ​su​ ​reutilización.

Esto​ ​nos​ ​permite​ ​mover​ ​código​ ​repetido​ ​en​ ​un​ ​proceso,​ ​función,​ ​manejador​ ​de​ ​evento​ ​o​ ​evento​ ​de​ ​tabla​ ​a
una​ ​función​ ​que​ ​será​ ​llamada​ ​desde​ ​diferentes​ ​puntos.​ ​La​ ​ventaja​ ​es​ ​que​ ​la​ ​llamada​ ​a​ ​una​ ​función​ ​se
realiza​ ​con​ ​un​ ​única​ ​línea​ ​de​ ​código,​ ​en​ ​el​ ​siguiente​ ​ejemplo​ ​se​ ​ve​ ​la​ ​llamada​ ​a​ ​2​ ​funciones.

Sin​ ​embargo,​ ​ejecutar​ ​un​ ​proceso​ ​con​ ​paso​ ​de​ ​parámetros​ ​requiere​ ​varias​ ​líneas​ ​de​ ​proceso.​ ​En​ ​el
siguiente​ ​ejemplo​ ​vemos​ ​la​ ​llamada​ ​a​ ​2​ ​procesos​ ​con​ ​los​ ​comandos​ ​de​ ​instrucción​ ​de​ ​manejador​ ​de
objeto.

Ten​ ​en​ ​cuenta​ ​el​ ​número​ ​limitado​ ​de​ ​parámetros
Una​ ​de​ ​las​ ​limitaciones​ ​de​ ​las​ ​funciones​ ​es​ ​que​ ​admite​ ​un​ ​máximo​ ​de​ ​10​ ​parámetros.​ ​No​ ​es​ ​una​ ​gran
limitación,​ ​pero​ ​debemos​ ​tenerla​ ​en​ ​cuenta​ ​a​ ​la​ ​hora​ ​de​ ​establecer​ ​la​ ​estrategia​ ​de​ ​paso​ ​de​ ​muchos
parámetros​ ​a​ ​una​ ​función.

101

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Tener​ ​una​ ​función​ ​con​ ​muchos​ ​parámetros​ ​no​ ​es​ ​cómodo,​ ​por​ ​lo​ ​que​ ​en​ ​la​ ​medida​ ​de​ ​los​ ​posible​ ​es​ ​mejor
crear​ ​funciones​ ​con​ ​pocos​ ​parámetros.

Si​ ​tenemos​ ​que​ ​pasar​ ​más​ ​de​ ​10​ ​parámetros​ ​y​ ​no​ ​podemos​ ​hacerlo​ ​con​ ​un​ ​proceso​ ​tenemos​ ​2​ ​opciones,
utilizar​ ​el​ ​10º​ ​parámetros​ ​para​ ​pasar​ ​muchos​ ​valores​ ​o​ ​pasar​ ​un​ ​único​ ​parámetro​ ​con​ ​todos​ ​los​ ​valores.
Esta​ ​segunda​ ​opción​ ​tiene​ ​la​ ​ventaja​ ​de​ ​que​ ​es​ ​más​ ​homogénea,​ ​es​ ​decir,​ ​no​ ​hay​ ​unos​ ​parámetros​ ​que​ ​se
pasan​ ​directamente​ ​y​ ​otros​ ​agrupados​ ​sino​ ​que​ ​todos​ ​se​ ​pasan​ ​agrupados.

Ese​ ​parámetro​ ​con​ ​múltiples​ ​valores​ ​puede​ ​tener​ ​los​ ​valores​ ​aplicando​ ​un​ ​formato​ ​JSON​ ​o​ ​XML​ ​o​ ​CSV,​ ​por
ejemplo.​ ​Una​ ​vez​ ​recibido​ ​el​ ​parámetro​ ​la​ ​función​ ​comienza​ ​descomponiendo​ ​dichos​ ​valores​ ​en​ ​las
diferentes​ ​variables​ ​locales​ ​o​ ​en​ ​una​ ​variable​ ​global​ ​de​ ​tipo​ ​array.

Documenta​ ​los​ ​parámetros​ ​en​ ​el​ ​inicio​ ​de​ ​la​ ​función
Pensando​ ​siempre​ ​en​ ​la​ ​mantenibilidad​ ​del​ ​código​ ​y​ ​que​ ​cualquier​ ​desarrollador​ ​puede​ ​necesitar​ ​usar​ ​la
función​ ​es​ ​importante​ ​describir​ ​correctamente​ ​los​ ​parámetros​ ​que​ ​recibe​ ​la​ ​función​ ​y​ ​el​ ​valor​ ​que
devuelve.

Usa​ ​buenas​ ​descripciones​ ​en​ ​las​ ​variables​ ​locales​ ​que​ ​sean​ ​parámetros
Cuando​ ​usamos​ ​una​ ​función​ ​tras​ ​seleccionarla​ ​de​ ​la​ ​lista​ ​nos​ ​encontraremos​ ​que​ ​en​ ​el​ ​lugar​ ​donde
tenemos​ ​que​ ​escribir​ ​los​ ​parámetros​ ​nos​ ​aparecerán​ ​unos​ ​textos​ ​correspondiente​ ​a​ ​las​ ​descripciones​ ​de

102

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

las​ ​variables​ ​locales​ ​de​ ​la​ ​función.​ ​Es​ ​fundamental​ ​que​ ​esas​ ​descripciones​ ​sean​ ​lo​ ​más​ ​cortas​ ​posibles​ ​a
la​ ​vez​ ​que​ ​cumplan​ ​la​ ​función​ ​de​ ​describir​ ​con​ ​precisión​ ​el​ ​dato​ ​que​ ​debemos​ ​pasar​ ​a​ ​la​ ​función.​ ​Si
podemos​ ​utilizar​ ​una​ ​palabra​ ​es​ ​mejor​ ​que​ ​dos​ ​o​ ​más,​ ​pero​ ​lo​ ​más​ ​importante​ ​es​ ​que​ ​se​ ​describa​ ​bien​ ​el
parámetro.

Ten​ ​en​ ​cuenta​ ​que​ ​en​ ​1º​ ​plano​ ​genera​ ​una​ ​transacción​ ​independiente
Velneo​ ​tiene​ ​un​ ​sistema​ ​transaccional​ ​automático​ ​que​ ​se​ ​encarga​ ​de​ ​englobar​ ​en​ ​una​ ​única​ ​transacción
todas​ ​las​ ​operaciones​ ​realizadas​ ​a​ ​partir​ ​de​ ​que​ ​ya​ ​exista​ ​una​ ​transacción​ ​abierta.​ ​Esto​ ​es​ ​totalmente
aplicable​ ​a​ ​las​ ​funciones​ ​cuando​ ​se​ ​ejecutan​ ​en​ ​el​ ​servidor.​ ​Sin​ ​embargo,​ ​cuando​ ​una​ ​función​ ​transacciona
y​ ​se​ ​ejecuta​ ​en​ ​1º​ ​plano,​ ​su​ ​transacción​ ​no​ ​queda​ ​agrupada​ ​con​ ​la​ ​que​ ​ya​ ​estuviese​ ​en​ ​abierta​ ​en​ ​curso,
sino​ ​que​ ​se​ ​crea​ ​una​ ​independiente.

Este​ ​funcionamiento​ ​debemos​ ​tenerlo​ ​en​ ​cuenta​ ​para​ ​evitar​ ​cuando​ ​sea​ ​preciso,​ ​cambiando​ ​en​ ​ese​ ​caso​ ​la
función​ ​por​ ​un​ ​proceso​ ​o​ ​para​ ​forzarlo​ ​cuando​ ​nos​ ​interese​ ​cambiando​ ​un​ ​proceso​ ​por​ ​una​ ​función.

¿Cuándo​ ​es​ ​mejor​ ​una​ ​función​ ​que​ ​un​ ​proceso?
Existen​ ​diferentes​ ​motivos​ ​por​ ​los​ ​que​ ​una​ ​función​ ​es​ ​más​ ​conveniente​ ​que​ ​un​ ​proceso:

● Cuando​ ​queremos​ ​lanzar​ ​código​ ​desde​ ​una​ ​fórmula​ ​debemos​ ​usar​ ​una​ ​función.
● Si​ ​queremos​ ​que​ ​se​ ​puede​ ​ejecutar​ ​el​ ​código​ ​remotamente​ ​desde​ ​otro​ ​servidor​ ​a​ ​través​ ​de​ ​una

función​ ​remota.
● Cuando​ ​queremos​ ​reducir​ ​el​ ​código​ ​de​ ​llamada​ ​a​ ​una​ ​línea.
● Cuando​ ​el​ ​código​ ​no​ ​tiene​ ​origen​ ​y​ ​necesitamos​ ​pasarle​ ​parámetros.
● Cuando​ ​queremos​ ​que​ ​genere​ ​una​ ​transacción​ ​independiente​ ​al​ ​ejecutarlo​ ​en​ ​1º​ ​plano.

103

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Conexiones​ ​de​ ​evento
Una​ ​gran​ ​parte​ ​de​ ​la​ ​potencia​ ​y​ ​funcionalidad​ ​de​ ​la​ ​interfaz​ ​de​ ​una​ ​aplicación​ ​viene​ ​dada​ ​por​ ​el​ ​uso​ ​de
señales​ ​que​ ​nos​ ​permiten​ ​lanzar​ ​código​ ​en​ ​un​ ​momento​ ​determinado​ ​de​ ​la​ ​aplicación.​ ​Las​ ​conexiones​ ​de
evento​ ​son​ ​muy​ ​potentes,​ ​pero​ ​también​ ​debemos​ ​usarlas​ ​con​ ​precaución​ ​para​ ​no​ ​abusar​ ​de​ ​ellas​ ​y
producir​ ​el​ ​efecto​ ​no​ ​deseado​ ​en​ ​nuestra​ ​interfaz.

Evita​ ​el​ ​uso​ ​de​ ​la​ ​conexión​ ​pérdida​ ​de​ ​foco
Aunque​ ​es​ ​una​ ​tendencia​ ​natural​ ​usar​ ​esta​ ​señal,​ ​no​ ​es​ ​la​ ​más​ ​recomendable​ ​ya​ ​que​ ​existen​ ​muchas
formas​ ​de​ ​perder​ ​el​ ​foco,​ ​cambiar​ ​de​ ​control​ ​con​ ​tabulación,​ ​con​ ​intro,​ ​pulsar​ ​una​ ​opción​ ​del​ ​botón​ ​de
menú​ ​del​ ​control,​ ​pulsar​ ​una​ ​tecla​ ​de​ ​función​ ​que​ ​activa​ ​un​ ​botón,​ ​cambiar​ ​de​ ​aplicación,​ ​etc.

El​ ​problema​ ​es​ ​que​ ​no​ ​siempre​ ​nos​ ​vamos​ ​a​ ​encontrar​ ​con​ ​que​ ​el​ ​funcionamiento​ ​es​ ​el​ ​esperado,​ ​aunque
detrás​ ​del​ ​comportamientos​ ​siempre​ ​hay​ ​una​ ​explicación​ ​lógica.​ ​Por​ ​este​ ​motivo​ ​es​ ​necesario​ ​trabajar​ ​con
esta​ ​señal​ ​con​ ​precaución.​ ​Funciona​ ​y​ ​funciona​ ​bien,​ ​pero​ ​hay​ ​mucha​ ​casuística​ ​que​ ​se​ ​debe​ ​tener​ ​en
cuenta.

Por​ ​ejemplo​ ​al​ ​pulsar​ ​un​ ​botón​ ​del​ ​formulario​ ​utilizando​ ​una​ ​tecla​ ​aceleradora,​ ​aunque​ ​se​ ​ejecuta​ ​el​ ​botón
nuestro​ ​control​ ​no​ ​pierde​ ​foco​ ​ya​ ​que​ ​así​ ​es​ ​el​ ​funcionamiento​ ​de​ ​las​ ​señales​ ​en​ ​Qt.​ ​Por​ ​este​ ​motivo​ ​en
ocasiones​ ​no​ ​es​ ​suficiente​ ​con​ ​la​ ​señal​ ​de​ ​pérdida​ ​de​ ​foco,​ ​además​ ​hay​ ​que​ ​hacer​ ​controles​ ​adicionales​ ​al
aceptar​ ​o​ ​cerrar​ ​el​ ​formulario.

Value​ ​changed​ ​es​ ​una​ ​buena​ ​opción
Habitualmente​ ​es​ ​más​ ​recomendable​ ​usar​ ​la​ ​señal​ ​value​ ​changed​ ​que​ ​la​ ​de​ ​pérdida​ ​de​ ​foco​ ​para​ ​detectar
si​ ​se​ ​han​ ​realizado​ ​cambios​ ​en​ ​los​ ​datos​ ​de​ ​un​ ​control.​ ​Es​ ​una​ ​señal​ ​que​ ​nos​ ​garantiza​ ​detectar​ ​cuando​ ​el
valor​ ​del​ ​campo​ ​ha​ ​cambiado​ ​tanto​ ​si​ ​es​ ​con​ ​una​ ​opción​ ​de​ ​localidad​ ​o​ ​alta​ ​de​ ​maestro​ ​a​ ​través​ ​del​ ​botón
de​ ​menú​ ​del​ ​control,​ ​como​ ​si​ ​es​ ​por​ ​una​ ​acción​ ​del​ ​usuario​ ​con​ ​el​ ​teclado​ ​a​ ​escribir​ ​un​ ​nuevo​ ​valor​ ​o​ ​con​ ​el
ratón​ ​al​ ​pulsar​ ​algún​ ​botón​ ​arriba​ ​o​ ​abajo​ ​o​ ​de​ ​selección​ ​de​ ​una​ ​lista​ ​en​ ​vista​ ​de​ ​datos.

Lo​ ​que​ ​tenemos​ ​que​ ​tener​ ​presente​ ​es​ ​que​ ​si​ ​el​ ​cambio​ ​de​ ​valor​ ​del​ ​control​ ​se​ ​realiza​ ​mediante
programación​ ​la​ ​señal​ ​no​ ​se​ ​disparará.​ ​Es​ ​decir,​ ​si​ ​el​ ​usuario​ ​cambia​ ​el​ ​valor​ ​manualmente​ ​si​ ​se​ ​dispara,
pero​ ​si​ ​el​ ​cambio​ ​es​ ​realizado​ ​por​ ​un​ ​manejador​ ​de​ ​evento​ ​programado​ ​la​ ​señal​ ​no​ ​se​ ​va​ ​a​ ​disparar.​ ​Es
fácil​ ​de​ ​gestionar,​ ​pero​ ​siempre​ ​que​ ​tengamos​ ​claro​ ​su​ ​funcionamiento.

Mejor​ ​usar​ ​“Ratón:​ ​botón​ ​soltado”​ ​que​ ​“Ratón:​ ​botón​ ​pulsado”
Estas​ ​señales​ ​aunque​ ​parezcan​ ​similares​ ​tienen​ ​una​ ​gran​ ​diferencia.​ ​El​ ​botón​ ​pulsado​ ​se​ ​dispara​ ​cuando​ ​el
usuario​ ​pulsa​ ​el​ ​botón,​ ​aunque​ ​pulse​ ​y​ ​no​ ​suelte​ ​el​ ​botón​ ​del​ ​ratón​ ​la​ ​señal​ ​se​ ​habrá​ ​disparado,​ ​sin
embargo​ ​si​ ​antes​ ​de​ ​soltar​ ​el​ ​botón​ ​se​ ​desplaza​ ​fuera​ ​del​ ​botón​ ​la​ ​señal​ ​ya​ ​se​ ​habría​ ​disparado​ ​cuando​ ​el
usuario​ ​realmente​ ​a​ ​cambiado​ ​de​ ​opinión​ ​al​ ​tratar​ ​de​ ​desplazar​ ​el​ ​ratón​ ​fuera​ ​del​ ​botón.

Por​ ​este​ ​motivo​ ​es​ ​más​ ​recomendable​ ​utilizar​ ​la​ ​señal​ ​botón​ ​soltado​ ​que​ ​garantiza​ ​que​ ​el​ ​usuario​ ​pulsó​ ​y
soltó​ ​el​ ​botón​ ​de​ ​ratón​ ​sobre​ ​el​ ​control.​ ​En​ ​el​ ​caso​ ​de​ ​controles​ ​de​ ​tipo​ ​botón​ ​ya​ ​existe​ ​una​ ​señal
específica​ ​con​ ​el​ ​nombre​ ​“Botón​ ​pulsado”.

104

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Incompatibilidad​ ​entre​ ​“Ítem:​ ​simple​ ​clic”​ ​e​ ​“Ítem:​ ​doble​ ​clic”
En​ ​las​ ​rejillas,​ ​por​ ​ejemplo,​ ​nos​ ​encontramos​ ​que​ ​podemos​ ​aplicar​ ​ambas​ ​señales,​ ​sin​ ​embargo​ ​debemos
tener​ ​en​ ​cuenta​ ​que​ ​si​ ​declaramos​ ​las​ ​2​ ​señales​ ​nos​ ​vamos​ ​a​ ​encontrar​ ​con​ ​que​ ​al​ ​hacer​ ​simple​ ​clic​ ​se
dispara​ ​la​ ​señal​ ​correspondiente,​ ​sin​ ​embargo​ ​hacer​ ​doble​ ​clic​ ​también​ ​se​ ​va​ ​a​ ​disparar​ ​la​ ​señal​ ​de​ ​simple
clic,​ ​algo​ ​que​ ​puede​ ​no​ ​ser​ ​lo​ ​esperado,​ ​pero​ ​que​ ​debemos​ ​tenerlo​ ​en​ ​cuenta.

Onclose​ ​solo​ ​está​ ​disponible​ ​en​ ​el​ ​AUTOEXEC
Cuando​ ​tratamos​ ​de​ ​controlar​ ​el​ ​cierre​ ​de​ ​la​ ​aplicación​ ​contamos​ ​con​ ​la​ ​señal​ ​Onclose​ ​disponible​ ​en​ ​el
objeto​ ​Marco​ ​denominado​ ​​AUTOEXEC​.​ ​Esta​ ​señal​ ​nos​ ​permite​ ​cancelar​ ​su​ ​cierre​ ​con​ ​el​ ​comando​ ​de
instrucción​ ​“​Set​ ​retorno​ ​=​ ​NO​”.

Controlar​ ​el​ ​cierre​ ​de​ ​un​ ​formulario​ ​en​ ​cuadro​ ​de​ ​diálogo
En​ ​el​ ​caso​ ​de​ ​los​ ​formularios​ ​en​ ​cuadro​ ​de​ ​diálogo​ ​aunque​ ​no​ ​disponemos​ ​de​ ​la​ ​señal​ ​podemos​ ​evitar​ ​su
cierre​ ​quitando​ ​la​ ​barra​ ​de​ ​título​ ​de​ ​la​ ​ventana,​ ​o​ ​quitando​ ​el​ ​icono​ ​de​ ​cerrar

Una​ ​vez​ ​que​ ​no​ ​hay​ ​botón​ ​cerrar​ ​en​ ​el​ ​título​ ​de​ ​la​ ​ventana​ ​podemos​ ​poner​ ​un​ ​botón​ ​“​Cerrar​”​ ​o​ ​“​Cancelar​”​ ​en
el​ ​formulario​ ​con​ ​el​ ​que​ ​tendremos​ ​control​ ​absoluto​ ​sobre​ ​la​ ​acción​ ​del​ ​usuario.

Controlar​ ​el​ ​cierre​ ​de​ ​un​ ​formulario​ ​en​ ​vista
En​ ​el​ ​caso​ ​de​ ​que​ ​queramos​ ​controlar​ ​el​ ​cierre​ ​de​ ​un​ ​formulario​ ​abierto​ ​en​ ​vista,​ ​podemos​ ​controlarlo​ ​a
través​ ​de​ ​la​ ​señal​ ​“​Vista​ ​cerrada​”.

Cuando​ ​se​ ​dispara​ ​la​ ​señal​ ​podemos​ ​utilizar​ ​funciones​ ​del​ ​API​ ​de​ ​Velneo​ ​a​ ​través​ ​de​ ​JavaScript​ ​para​ ​saber
que​ ​formulario​ ​es​ ​el​ ​que​ ​está​ ​activo​ ​y​ ​por​ ​lo​ ​tanto​ ​el​ ​que​ ​está​ ​tratando​ ​de​ ​cerrar​ ​el​ ​usuario.

105

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Manejadores​ ​de​ ​evento
Los​ ​manejadores​ ​de​ ​evento​ ​tienen​ ​la​ ​ventaja​ ​de​ ​ser​ ​código​ ​“conectado”​ ​al​ ​objeto​ ​al​ ​que​ ​pertenece,​ ​de​ ​tal
forma​ ​que​ ​un​ ​manejador​ ​de​ ​evento​ ​de​ ​un​ ​formulario​ ​tiene​ ​control​ ​sobre​ ​el​ ​registro​ ​editado​ ​y​ ​todos​ ​los
controles​ ​de​ ​la​ ​interfaz,​ ​y​ ​un​ ​manejador​ ​de​ ​evento​ ​de​ ​una​ ​rejilla​ ​sobre​ ​la​ ​lista​ ​de​ ​registros​ ​y​ ​sus​ ​columnas.

Al​ ​estar​ ​conectado​ ​el​ ​manejador​ ​de​ ​evento​ ​es​ ​usado​ ​para​ ​aplicar​ ​funcionalidades​ ​de​ ​avanzadas​ ​de​ ​interfaz
que​ ​no​ ​podríamos​ ​lograr​ ​con​ ​procesos​ ​o​ ​funciones.

Un​ ​manejador​ ​puede​ ​llamar​ ​a​ ​otro​ ​del​ ​mismo​ ​objeto​ ​salvo​ ​en​ ​el​ ​marco​ ​​AUTOEXEC
Un​ ​comando​ ​usado​ ​habitualmente​ ​y​ ​que​ ​nos​ ​ayuda​ ​a​ ​tener​ ​código​ ​de​ ​responsabilidad​ ​única​ ​es​ ​“​Interfaz:
Ejecutar​ ​manejador​ ​de​ ​evento​”,​ ​este​ ​comando​ ​permite​ ​hacer​ ​llamadas​ ​de​ ​un​ ​manejador​ ​a​ ​otro​ ​teniendo
siempre​ ​presente​ ​que​ ​comparten​ ​el​ ​registro​ ​o​ ​la​ ​lista​ ​de​ ​origen​ ​del​ ​objeto​ ​así​ ​como​ ​las​ ​variables​ ​locales​ ​y
las​ ​cestas.

Sin​ ​embargo,​ ​hay​ ​una​ ​excepción,​ ​el​ ​marco​ ​​AUTOEXEC​​ ​aunque​ ​permite​ ​la​ ​creación​ ​de​ ​conexiones​ ​y
manejadores​ ​de​ ​evento​ ​no​ ​permite​ ​que​ ​un​ ​manejador​ ​de​ ​evento​ ​llame​ ​a​ ​otro.​ ​En​ ​este​ ​caso​ ​particular
tendremos​ ​que​ ​hacer​ ​uso​ ​de​ ​funciones​ ​o​ ​procesos​ ​para​ ​evitar​ ​código​ ​repetido.

Las​ ​variables​ ​locales​ ​son​ ​compartidas​ ​entre​ ​los​ ​manejadores
Una​ ​funcionalidad​ ​muy​ ​cómoda​ ​cuando​ ​trabajamos​ ​con​ ​los​ ​manejadores​ ​de​ ​objetos​ ​es​ ​que​ ​las​ ​variables
locales​ ​declaradas​ ​en​ ​el​ ​objeto​ ​son​ ​compartidas​ ​por​ ​todos​ ​los​ ​manejadores,​ ​eso​ ​significa​ ​que​ ​podemos
almacenar​ ​valores​ ​en​ ​variables​ ​locales​ ​para​ ​posteriormente​ ​utilizarlas​ ​en​ ​otro​ ​manejador.​ ​Esta
funcionalidad​ ​es​ ​aplicable​ ​dentro​ ​del​ ​objeto,​ ​es​ ​decir​ ​a​ ​nivel​ ​de​ ​una​ ​tabla,​ ​un​ ​formulario,​ ​una​ ​rejilla,​ ​etc.

Debemos​ ​tener​ ​en​ ​cuenta​ ​que​ ​si​ ​un​ ​objeto​ ​está​ ​instanciado​ ​más​ ​de​ ​una​ ​vez,​ ​por​ ​ejemplo​ ​el​ ​usuario​ ​abre​ ​el
formulario​ ​de​ ​dos​ ​clientes​ ​distintos,​ ​aunque​ ​el​ ​objeto​ ​es​ ​el​ ​mismo​ ​cada​ ​formulario​ ​tiene​ ​su​ ​propio​ ​ámbito
de​ ​ejecución,​ ​y​ ​por​ ​lo​ ​tanto​ ​las​ ​variables​ ​de​ ​un​ ​formulario​ ​son​ ​comunes​ ​para​ ​todos​ ​sus​ ​manejadores,​ ​pero
las​ ​variables​ ​locales​ ​de​ ​un​ ​formulario​ ​no​ ​son​ ​accesibles​ ​para​ ​los​ ​manejadores​ ​que​ ​están​ ​asociados​ ​al​ ​otro
formulario.

Las​ ​cestas​ ​locales​ ​son​ ​compartidas​ ​entre​ ​los​ ​manejadores
Las​ ​cestas​ ​locales​ ​tienen​ ​un​ ​ámbito​ ​y​ ​una​ ​persistencia​ ​asociada​ ​a​ ​la​ ​ejecución​ ​del​ ​manejador​ ​que​ ​la​ ​crea,
sin​ ​embargo​ ​sin​ ​un​ ​manejador​ ​de​ ​objeto​ ​crea​ ​una​ ​cesta​ ​local​ ​y​ ​llamamos​ ​desde​ ​ese​ ​manejador​ ​a​ ​otro
manejador​ ​que​ ​utiliza​ ​un​ ​cesta​ ​con​ ​el​ ​mismo​ ​identificador,​ ​la​ ​cesta​ ​es​ ​compartida​ ​por​ ​ambos
manejadores.​ ​Al​ ​finalizar​ ​la​ ​ejecución​ ​del​ ​manejador​ ​que​ ​creó​ ​la​ ​cesta​ ​el​ ​objeto​ ​será​ ​destruido​ ​de​ ​tal​ ​forma
que​ ​al​ ​volver​ ​a​ ​lanzar​ ​el​ ​mismo​ ​manejador​ ​se​ ​creará​ ​una​ ​nueva​ ​cesta​ ​local.

Aplica​ ​el​ ​criterio​ ​de​ ​responsabilidad​ ​única​ ​y​ ​evita​ ​código​ ​repetido
Los​ ​manejadores​ ​de​ ​evento​ ​al​ ​igual​ ​que​ ​las​ ​otras​ ​piezas​ ​de​ ​código​ ​en​ ​Velneo​ ​permiten​ ​escribir​ ​todo​ ​el
código​ ​que​ ​necesites,​ ​aunque​ ​no​ ​es​ ​recomendable​ ​hacer​ ​código​ ​largo​ ​ya​ ​que​ ​dificulta​ ​su​ ​legibilidad​ ​y
mantenibilidad.

Gracias​ ​a​ ​la​ ​compartición​ ​del​ ​origen,​ ​variables​ ​y​ ​cestas,​ ​es​ ​muy​ ​sencillo​ ​evitar​ ​el​ ​código​ ​repetido​ ​en​ ​los
manejadores​ ​de​ ​evento,​ ​ya​ ​que​ ​podemos​ ​hacer​ ​que​ ​un​ ​manejador​ ​llame​ ​a​ ​otro.​ ​Aplicando​ ​el​ ​mismo​ ​criterio

106

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

podemos​ ​evitar​ ​que​ ​los​ ​manejadores​ ​hagan​ ​múltiples​ ​cosas,​ ​por​ ​ejemplo​ ​verificaciones,​ ​transacciones,
cambiar​ ​el​ ​estado​ ​de​ ​la​ ​interfaz,​ ​etc.​ ​Es​ ​recomendable​ ​crear​ ​pequeños​ ​manejadores​ ​de​ ​evento​ ​con
responsabilidad​ ​única​ ​que​ ​son​ ​llamados​ ​desde​ ​otros​ ​manejadores​ ​de​ ​evento.

107

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Barra​ ​de​ ​menú
La​ ​barra​ ​de​ ​menú​ ​es​ ​un​ ​objeto​ ​importante​ ​de​ ​la​ ​aplicación​ ​que​ ​en​ ​muchos​ ​casos​ ​requiere​ ​cierto​ ​grado​ ​de
personalización.

No​ ​se​ ​pueden​ ​añadir​ ​o​ ​quitar​ ​opciones,​ ​pero​ ​sí​ ​limpiar​ ​y​ ​volver​ ​a​ ​construir
Para​ ​personalizar​ ​en​ ​tiempo​ ​de​ ​ejecución​ ​la​ ​barra​ ​de​ ​menú​ ​no​ ​podemos​ ​añadir​ ​o​ ​quitar​ ​opciones,​ ​la​ ​única
posibilidad​ ​es​ ​limpiar​ ​la​ ​barra​ ​de​ ​menú​ ​y​ ​añadirle​ ​las​ ​opciones​ ​deseadas.​ ​Esto​ ​se​ ​puede​ ​realizar​ ​utilizando
funciones​ ​de​ ​las​ ​clases​ ​API​ ​de​ ​Velneo.

108

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Menús
Los​ ​menús​ ​y​ ​sus​ ​opciones​ ​son​ ​los​ ​elementos​ ​principales​ ​de​ ​interacción​ ​del​ ​usuario,​ ​ya​ ​que​ ​disparan​ ​las
acciones​ ​que​ ​quieren​ ​ejecutar​ ​para​ ​llevar​ ​a​ ​cabo​ ​las​ ​tareas.​ ​Como​ ​siempre​ ​cuantas​ ​menos​ ​opciones​ ​tenga
un​ ​menú​ ​es​ ​mejor​ ​para​ ​el​ ​usuario​ ​sin​ ​que​ ​por​ ​ello​ ​debamos​ ​incrementar​ ​el​ ​número​ ​de​ ​niveles​ ​del​ ​menú​ ​por
no​ ​tener​ ​demasiadas​ ​opciones​ ​en​ ​cada​ ​nivel.

Minimiza​ ​las​ ​opciones​ ​de​ ​tus​ ​menús
Tanto​ ​en​ ​los​ ​menús​ ​arbolados​ ​como​ ​en​ ​las​ ​barras​ ​de​ ​menú​ ​hay​ ​que​ ​tratar​ ​de​ ​utilizar​ ​el​ ​menor​ ​número​ ​de
opciones​ ​posibles.​ ​No​ ​es​ ​necesario​ ​establecer​ ​un​ ​número​ ​mínimo​ ​o​ ​un​ ​número​ ​máximo,​ ​pero​ ​sí​ ​que​ ​es
conveniente​ ​que​ ​el​ ​nº​ ​de​ ​opciones​ ​no​ ​obligue​ ​al​ ​usuario​ ​a​ ​leer​ ​demasiado​ ​para​ ​encontrar​ ​la​ ​opción
deseada.

El​ ​orden​ ​de​ ​las​ ​opciones​ ​de​ ​menú​ ​es​ ​la​ ​clave
En​ ​el​ ​menú​ ​principal​ ​arbolado​ ​de​ ​la​ ​captura​ ​vemos​ ​el​ ​orden​ ​ventas,​ ​compras,​ ​almacén,​ ​maestros​ ​y
contabilidad.​ ​Este​ ​orden​ ​sigue​ ​el​ ​criterio​ ​de​ ​uso,​ ​es​ ​decir,​ ​la​ ​opción​ ​más​ ​usada​ ​al​ ​principio​ ​y​ ​al​ ​final​ ​la
menos​ ​usada.

En​ ​el​ ​menú​ ​de​ ​Ventas​ ​el​ ​orden​ ​aplicado​ ​sigue​ ​el​ ​criterio​ ​de​ ​ciclo​ ​funcional,​ ​es​ ​decir​ ​el​ ​orden​ ​que​ ​tiene​ ​un
ciclo​ ​de​ ​ventas​ ​desde​ ​el​ ​presupuesto​ ​hasta​ ​el​ ​cobro​ ​de​ ​la​ ​factura​ ​mediante​ ​remesa.

109

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

En​ ​el​ ​menú​ ​de​ ​maestros,​ ​por​ ​ejemplo​ ​se​ ​sigue​ ​el​ ​criterio​ ​alfabético,​ ​ya​ ​que​ ​hay​ ​muchas​ ​opciones.

​ ​

En​ ​el​ ​submenú​ ​de​ ​configuración​ ​de​ ​la​ ​barra​ ​de​ ​menús​ ​se​ ​sigue​ ​el​ ​criterio​ ​alfabético​ ​pero​ ​separando​ ​en​ ​2
grupos​ ​las​ ​opciones,​ ​en​ ​primer​ ​lugar​ ​las​ ​más​ ​usadas​ ​y​ ​luego​ ​las​ ​de​ ​uso​ ​menos​ ​frecuente.

En​ ​definitiva,​ ​podemos​ ​usar​ ​diferentes​ ​criterios​ ​de​ ​ordenación,​ ​pero​ ​siempre​ ​siguiendo​ ​una​ ​lógica
comprensible​ ​por​ ​el​ ​usuario​ ​de​ ​forma​ ​sencilla​ ​y​ ​lógica.

Crea​ ​menú​ ​de​ ​botón​ ​para​ ​cada​ ​maestro
En​ ​los​ ​campos​ ​de​ ​edición​ ​punteros​ ​a​ ​maestro​ ​debemos​ ​declarar​ ​siempre​ ​un​ ​menú​ ​de​ ​botón​ ​que​ ​permita

110

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

realizar​ ​las​ ​funciones​ ​estándar​ ​de​ ​localización,​ ​alta​ ​y​ ​edición.

Un​ ​aspecto​ ​fundamental​ ​de​ ​estos​ ​menús​ ​es​ ​que​ ​utilicen​ ​teclas​ ​aceleradoras​ ​que​ ​permitan​ ​al​ ​usuario
ejecutar​ ​las​ ​opciones​ ​de​ ​forma​ ​rápida​ ​y​ ​directa​ ​a​ ​través​ ​del​ ​teclado​ ​sin​ ​usar​ ​el​ ​ratón.​ ​Este​ ​menú​ ​se​ ​puede
desplegar​ ​con​ ​​Mayúscula+F4​​ ​y​ ​luego​ ​usar​ ​las​ ​teclas​ ​para​ ​seleccionar​ ​la​ ​opción​ ​y​ ​finalmente​ ​pulsar​ ​​Intro​,
sin​ ​embargo​ ​es​ ​mucho​ ​más​ ​sencillo​ ​y​ ​directo​ ​usar​ ​la​ ​tecla​ ​aceleradora​ ​​F5​​ ​para​ ​localizar,​ ​​F6​​ ​para​ ​crear​ ​un
nuevo​ ​registro​ ​y​ ​​F7​​ ​para​ ​editar​ ​el​ ​registro​ ​seleccionado.

Es​ ​fundamental​ ​para​ ​el​ ​usuario​ ​saber​ ​que​ ​las​ ​mismas​ ​teclas​ ​aceleradoras​ ​ejecutarán​ ​la​ ​misma​ ​acción​ ​en
todos​ ​los​ ​casos.

Utiliza​ ​el​ ​mismo​ ​icono​ ​en​ ​todos​ ​los​ ​botones​ ​de​ ​menú
Para​ ​facilitar​ ​al​ ​usuario​ ​la​ ​comprensión​ ​de​ ​la​ ​interfaz​ ​recomendamos​ ​usar​ ​siempre​ ​el​ ​mismo​ ​icono​ ​que
represente​ ​el​ ​menú​ ​de​ ​botón​ ​contextual​ ​en​ ​todos​ ​los​ ​controles,​ ​evitamos​ ​al​ ​usuario​ ​pensar​ ​que​ ​hará​ ​el
botón.

111

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Toolbars
Las​ ​barras​ ​de​ ​herramientas​ ​son​ ​muy​ ​utilizadas​ ​para​ ​aportar​ ​funcionalidad​ ​adicional​ ​en​ ​los​ ​objetos​ ​de​ ​lista
como​ ​alternadores​ ​y​ ​rejillas,​ ​además​ ​de​ ​la​ ​toolbar​ ​general​ ​que​ ​se​ ​pueden​ ​añadir​ ​a​ ​los​ ​docks​ ​del​ ​marco.

Utiliza​ ​iconos
Las​ ​toolbar​ ​suelen​ ​tener​ ​opciones​ ​relacionadas​ ​con​ ​operaciones​ ​transaccionales​ ​como​ ​altas,​ ​bajas​ ​y
modificaciones,​ ​impresión​ ​de​ ​informes​ ​o​ ​procesos​ ​que​ ​realizan​ ​acciones​ ​específicas​ ​como​ ​cálculos,
generación​ ​de​ ​documentos,​ ​etc.

Como​ ​habitualmente​ ​se​ ​incluyen​ ​acciones​ ​estándar​ ​y​ ​para​ ​conseguir​ ​una​ ​interfaz​ ​sencilla​ ​en​ ​el​ ​sistema
Velneo​ ​las​ ​toolbars​ ​se​ ​declaran​ ​con​ ​solo​ ​iconos​ ​y​ ​sin​ ​texto.​ ​Aunque​ ​al​ ​pulsar​ ​sobre​ ​el​ ​botón​ ​de​ ​la​ ​toolbar
según​ ​sea​ ​de​ ​tipo​ ​informe​ ​o​ ​más​ ​opciones,​ ​por​ ​ejemplo​ ​se​ ​abrirá​ ​un​ ​menú​ ​con​ ​el​ ​detalle​ ​de​ ​opciones
asociadas​ ​al​ ​botón.​ ​Veamos​ ​un​ ​par​ ​de​ ​ejemplos​ ​del​ ​menú​ ​que​ ​despliega​ ​al​ ​pulsar​ ​sobre​ ​el​ ​botón​ ​de
informes​ ​o​ ​más​ ​opciones.

​ ​​ ​​ ​​ ​

112

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Si​ ​desarrollas​ ​una​ ​aplicación​ ​estándar,​ ​añade​ ​una​ ​acción​ ​con​ ​punto​ ​de​ ​inserción​ ​en​ ​cada​ ​menú
Si​ ​desarrollas​ ​aplicaciones​ ​a​ ​medida​ ​no​ ​tienes​ ​que​ ​preocuparte​ ​por​ ​facilitar​ ​la​ ​personalización​ ​desde​ ​otro
proyecto​ ​que​ ​herede​ ​tu​ ​solución,​ ​sin​ ​embargo​ ​si​ ​desarrollas​ ​aplicaciones​ ​estándar​ ​o​ ​tienes​ ​un​ ​núcleo​ ​único
para​ ​todos​ ​tus​ ​clientes,​ ​o​ ​una​ ​solución​ ​sectorial​ ​que​ ​luego​ ​personalizas​ ​para​ ​cada​ ​cliente,​ ​debes​ ​tener​ ​en
cuenta​ ​que​ ​las​ ​toolbars​ ​sean​ ​“personalizables”.​ ​Es​ ​decir,​ ​que​ ​puedas​ ​añadirle​ ​opciones​ ​desde​ ​proyectos
que​ ​lo​ ​heredan.​ ​En​ ​la​ ​siguiente​ ​captura​ ​se​ ​puede​ ​apreciar​ ​como​ ​existen​ ​opciones​ ​que​ ​aparecen​ ​en​ ​itálica
que​ ​representan​ ​puntos​ ​de​ ​inserción​ ​que​ ​han​ ​sido​ ​añadidos​ ​en​ ​los​ ​menús​ ​que​ ​a​ ​su​ ​vez​ ​están​ ​incluidos​ ​en
la​ ​toolbar.

En​ ​la​ ​captura​ ​se​ ​puede​ ​apreciar​ ​que​ ​existen​ ​2​ ​puntos​ ​de​ ​inserción​ ​para​ ​cada​ ​menú,​ ​uno​ ​de​ ​ellos​ ​solo​ ​lleva
el​ ​sufijo​ ​​_INS​​ ​y​ ​representa​ ​un​ ​punto​ ​de​ ​inserción​ ​sin​ ​origen.

Si​ ​vamos​ ​a​ ​colocar​ ​la​ ​toolbar​ ​en​ ​un​ ​objeto​ ​con​ ​origen​ ​como​ ​puede​ ​ser​ ​un​ ​alternador​ ​o​ ​rejilla,​ ​conviene
añadir​ ​una​ ​segunda​ ​opción​ ​de​ ​punto​ ​de​ ​inserción​ ​con​ ​origen​ ​de​ ​la​ ​tabla​ ​que​ ​es​ ​el​ ​que​ ​lleva​ ​el​ ​sufijo
_INS_TAB​.

113

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Agrupa​ ​los​ ​botones​ ​por​ ​funcionalidad
Las​ ​toolbar​ ​con​ ​muchos​ ​botones​ ​son​ ​más​ ​complejas​ ​de​ ​usar​ ​y​ ​tienen​ ​más​ ​carga​ ​cognitiva​ ​para​ ​el​ ​usuario,
es​ ​como​ ​tener​ ​un​ ​menú​ ​que​ ​contenga​ ​todas​ ​las​ ​opciones​ ​en​ ​el​ ​nivel​ ​principal,​ ​sin​ ​submenús.​ ​Aplicando​ ​el
mismo​ ​criterio​ ​es​ ​preferible​ ​tener​ ​las​ ​opciones​ ​de​ ​informes​ ​o​ ​de​ ​más​ ​opciones​ ​que​ ​ejecutan​ ​cálculos​ ​o
procesos​ ​agrupadas​ ​en​ ​un​ ​botón​ ​único​ ​que​ ​las​ ​unifica.

​ ​​ ​​ ​​ ​

Con​ ​este​ ​sistema​ ​el​ ​usuario​ ​cada​ ​vez​ ​que​ ​ve​ ​una​ ​toolbar​ ​ya​ ​sabe​ ​con​ ​el​ ​primer​ ​vistazo​ ​si​ ​tiene​ ​alguna
opción​ ​de​ ​impresión​ ​o​ ​de​ ​cálculos.

114

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Acciones
Este​ ​objeto​ ​es​ ​usado​ ​habitualmente​ ​para​ ​añadir​ ​opciones​ ​en​ ​menús,​ ​barra​ ​de​ ​menús​ ​y​ ​toolbars,​ ​aunque
también​ ​es​ ​posible​ ​ejecutarlo​ ​desde​ ​código.​ ​Es​ ​un​ ​objeto​ ​bastante​ ​simple​ ​que​ ​apenas​ ​tiene​ ​configuración,
aunque​ ​sí​ ​debemos​ ​ser​ ​precisos​ ​con​ ​la​ ​descripción​ ​del​ ​objeto​ ​ya​ ​que​ ​se​ ​convertirá​ ​en​ ​el​ ​texto​ ​de​ ​las
opciones​ ​de​ ​menú.

Evita​ ​el​ ​uso​ ​de​ ​iconos
Como​ ​ya​ ​hemos​ ​comentado​ ​en​ ​otros​ ​apartados,​ ​puede​ ​ser​ ​interesante​ ​aplicar​ ​algún​ ​icono​ ​siempre​ ​que
aporte​ ​información​ ​relevante,​ ​sin​ ​embargo,​ ​las​ ​opciones​ ​de​ ​menús​ ​y​ ​toolbars​ ​suelen​ ​necesitar​ ​un​ ​texto
más​ ​descriptivo​ ​por​ ​lo​ ​que​ ​puede​ ​ser​ ​redundante​ ​el​ ​uso​ ​de​ ​texto​ ​e​ ​iconos​ ​a​ ​la​ ​vez.​ ​En​ ​estos​ ​casos​ ​puede
ser​ ​preferible​ ​evitar​ ​el​ ​uso​ ​de​ ​iconos.

115

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Marco​ ​​AUTOEXEC
Es​ ​el​ ​objeto​ ​de​ ​acceso​ ​a​ ​la​ ​interfaz​ ​de​ ​la​ ​aplicación.

Aplicar​ ​CSS​ ​en​ ​el​ ​evento​ ​​Pre-Inicialización
El​ ​lugar​ ​adecuado​ ​para​ ​aplicar​ ​CSS​ ​generales​ ​a​ ​una​ ​aplicación​ ​es​ ​el​ ​marco​ ​​AUTOEXEC​.​ ​Y​ ​el​ ​lugar​ ​concreto
es​ ​el​ ​manejador​ ​de​ ​​Pre-Inicialización​.

Si​ ​aplicamos​ ​las​ ​CSS​ ​en​ ​el​ ​evento​ ​Post-Inicializado​ ​la​ ​aplicación​ ​de​ ​CSS​ ​también​ ​funciona,​ ​pero​ ​tendremos
un​ ​efecto​ ​secundario​ ​no​ ​deseado​ ​y​ ​es​ ​que​ ​primero​ ​se​ ​pintarán​ ​los​ ​controles​ ​con​ ​el​ ​estilo​ ​estándar​ ​de
arranque​ ​y​ ​una​ ​vez​ ​pintados​ ​se​ ​ejecutará​ ​el​ ​manejador​ ​de​ ​evento​ ​Post-Inicializado​ ​que​ ​al​ ​aplicar​ ​las​ ​CSS
provoca​ ​un​ ​repintado.​ ​Sin​ ​embargo,​ ​si​ ​lo​ ​hacemos​ ​en​ ​el​ ​Pre-Inicialización​ ​ya​ ​se​ ​aplica​ ​las​ ​CSS​ ​en​ ​el​ ​pintado
inicial.​ ​Esto​ ​mismo​ ​es​ ​aplicable​ ​también​ ​en​ ​cualquier​ ​objetos​ ​de​ ​vista​ ​tanto​ ​de​ ​ficha​ ​como​ ​de​ ​lista.

Permitir​ ​configurar​ ​que​ ​la​ ​barra​ ​de​ ​estado​ ​se​ ​puede​ ​mostrar​ ​u​ ​ocultar
La​ ​barra​ ​de​ ​estado​ ​es​ ​un​ ​espacio​ ​muy​ ​útil​ ​en​ ​algunas​ ​ocasiones​ ​para​ ​mostrar​ ​mensajes​ ​o​ ​barras​ ​de
progreso,​ ​sin​ ​embargo​ ​podemos​ ​tener​ ​algunas​ ​circunstancias​ ​en​ ​las​ ​que​ ​no​ ​deseamos​ ​que​ ​sea​ ​visible,​ ​por
ejemplo​ ​cuando​ ​queremos​ ​una​ ​interfaz​ ​lo​ ​más​ ​limpia​ ​posible​ ​y​ ​también​ ​cuando​ ​estemos​ ​trabajando​ ​con
una​ ​resolución​ ​muy​ ​baja​ ​en​ ​formato​ ​16:9​ ​donde​ ​tenemos​ ​muy​ ​poco​ ​espacio​ ​vertical​ ​y​ ​cada​ ​píxel​ ​cuenta.

En​ ​esos​ ​casos​ ​puede​ ​interesarnos​ ​quitar​ ​la​ ​barra​ ​de​ ​estado,​ ​o​ ​hacerlo​ ​de​ ​modo​ ​temporal​ ​o​ ​incluso​ ​dejarlo
configurable​ ​a​ ​nivel​ ​general​ ​de​ ​aplicación​ ​o​ ​de​ ​usuario.​ ​El​ ​siguiente​ ​código​ ​JavaScript​ ​lo​ ​permite​ ​de​ ​forma
sencilla.

Aunque​ ​también​ ​podemos​ ​gestionarlo​ ​con​ ​código​ ​nativo.

116

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Formularios​ ​de​ ​edición
El​ ​objeto​ ​más​ ​importante​ ​a​ ​la​ ​hora​ ​de​ ​crear​ ​la​ ​interfaz​ ​de​ ​usuario​ ​de​ ​las​ ​aplicaciones.​ ​Debemos​ ​crearlos
con​ ​el​ ​mayor​ ​mimo​ ​posible,​ ​cuando​ ​al​ ​máximo​ ​los​ ​detalles,​ ​porque​ ​para​ ​el​ ​usuario​ ​todo​ ​lo​ ​que​ ​tiene​ ​a​ ​la
vista​ ​es​ ​muy​ ​importante.

Identificadores
Los​ ​controles​ ​incluidos​ ​en​ ​los​ ​formularios​ ​siguen​ ​los​ ​siguientes​ ​criterios​ ​de​ ​nomenclatura​ ​que​ ​podemos
ver​ ​en​ ​la​ ​siguiente​ ​tabla​ ​que​ ​contiene​ ​los​ ​controles​ ​más​ ​habituales​ ​de​ ​un​ ​formulario.

Identificador Descripción

BTN_AVA_CTL Botón​ ​oculto​ ​que​ ​permite​ ​al​ ​usuario​ ​avanzar​ ​de​ ​control​ ​con​ ​la​ ​tecla​ ​​Intro​.

LAY_TIT Layout​ ​del​ ​título.

TXT_TIT Título​ ​del​ ​formulario.

LAY_CAB Layout​ ​de​ ​cabecera.

TXT_ID Texto​ ​estático​ ​o​ ​nombre​ ​del​ ​campo​ ​​ID​.

ID Control​ ​de​ ​edición​ ​del​ ​campo​ ​​ID​.

TXT_NOM Texto​ ​estático​ ​o​ ​nombre​ ​del​ ​campo​ ​​NAME​.

NOM Control​ ​de​ ​edición​ ​del​ ​campo​ ​​NAME​.

LAY_DET Layout​ ​detalle.

SEP Control​ ​de​ ​tipo​ ​separador​ ​formularios.

LST Control​ ​de​ ​vista​ ​de​ ​datos​ ​ubicado​ ​directamente​ ​en​ ​el​ ​formulario.

LAY_BTN Layout​ ​botones​ ​(en​ ​el​ ​pie)

BTN_ACE Botón​ ​aceptar.

BTN_CNC Botón​ ​cancelar.

EXP_BTN Expansor​ ​entre​ ​botones.

BTN_SUP Botón​ ​eliminar.

BTN_OPC Botón​ ​opciones.

Un​ ​formulario​ ​prototipo​ ​con​ ​estos​ ​controles​ ​sería​ ​el​ ​siguiente:

117

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Resolución​ ​mínima
Diseñaremos​ ​los​ ​formularios​ ​para​ ​que​ ​los​ ​controles​ ​se​ ​vean​ ​correctamente​ ​con​ ​una​ ​resolución​ ​de
1366x768.​ ​Si​ ​hay​ ​problemas​ ​de​ ​espacio​ ​dividiremos​ ​la​ ​información​ ​en​ ​más​ ​subformularios.

Tamaño​ ​del​ ​formulario
Los​ ​formularios​ ​tendrán​ ​un​ ​ancho​ ​múltiplo​ ​de​ ​la​ ​unidad​ ​de​ ​referencia,​ ​es​ ​decir,​ ​120,​ ​240,​ ​360,​ ​480,​ ​600,​ ​720,
840​ ​y​ ​960.​ ​En​ ​principio​ ​trataremos​ ​de​ ​no​ ​maquetar​ ​formularios​ ​que​ ​superen​ ​este​ ​tamaño.

El​ ​alto​ ​de​ ​un​ ​formulario​ ​también​ ​será​ ​múltiplo​ ​de​ ​la​ ​unidad​ ​de​ ​referencia​ ​30,​ ​60,​ ​90,​ ​120,​ ​150,​ ​180,​ ​210,​ ​240,
270,​ ​300,​ ​330,​ ​360,​ ​390,​ ​420,​ ​450,​ ​480,​ ​510,​ ​540,​ ​570,​ ​600,​ ​630,​ ​660,​ ​690​ ​y​ ​720.​ ​Trataremos​ ​de​ ​no​ ​superar
los​ ​720px​ ​en​ ​altura​ ​ya​ ​que​ ​la​ ​resolución​ ​mínima​ ​es​ ​de​ ​768​ ​y​ ​debe​ ​entrar​ ​la​ ​barra​ ​de​ ​título​ ​de​ ​la​ ​ventana​ ​más
la​ ​barra​ ​de​ ​estado​ ​si​ ​está​ ​visible.

Tamaño​ ​de​ ​los​ ​subformularios
Los​ ​subformularios​ ​al​ ​visualizarse​ ​dentro​ ​del​ ​área​ ​del​ ​formulario​ ​principal​ ​no​ ​necesitar​ ​tener​ ​una
dimensión​ ​específica​ ​asociada​ ​a​ ​la​ ​unidad​ ​de​ ​referencia,​ ​aunque​ ​siempre​ ​es​ ​conveniente​ ​aplicar​ ​los
mismos​ ​criterios​ ​de​ ​tamaño.

Para​ ​subformularios​ ​que​ ​muestren​ ​una​ ​vista​ ​de​ ​datos​ ​lo​ ​mejor​ ​es​ ​utilizar​ ​una​ ​dimensión​ ​muy​ ​reducida​ ​ya
que​ ​el​ ​control​ ​crecerá​ ​para​ ​ocupar​ ​todo​ ​el​ ​área.​ ​Por​ ​defecto​ ​ponemos​ ​el​ ​control​ ​de​ ​vista​ ​de​ ​datos​ ​de

118

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

100x100​ ​y​ ​el​ ​formulario​ ​de​ ​120x120.

Tamaños​ ​y​ ​alineamientos​ ​de​ ​los​ ​tipos​ ​de​ ​control
En​ ​la​ ​siguiente​ ​tabla​ ​se​ ​detallan​ ​los​ ​tamaños​ ​de​ ​anchos,​ ​altos,​ ​los​ ​anchos​ ​y​ ​altos​ ​de​ ​layout​ ​y​ ​la​ ​alineación
de​ ​los​ ​diferentes​ ​tipos​ ​de​ ​control​ ​que​ ​podemos​ ​usar​ ​en​ ​los​ ​formularios.​ ​Estos​ ​son​ ​tamaños​ ​base​ ​pueden
ajustarse​ ​para​ ​conseguir​ ​un​ ​mejor​ ​alineamiento​ ​de​ ​todos​ ​los​ ​controles​ ​en​ ​el​ ​formulario

Tipo​ ​de​ ​control Ancho Alto Ancho​ ​layout Alto​ ​layout Alineación

Texto​ ​estático​ ​a​ ​la​ ​izquierda 120 20 Por​ ​defecto Por​ ​defecto Izquierda

Texto​ ​estático​ ​arriba 120 20 Por​ ​defecto Por​ ​defecto Según​ ​control

Nombre​ ​de​ ​campo​ ​a​ ​la​ ​izquierda 120 20 Por​ ​defecto Por​ ​defecto Izquierda

Nombre​ ​de​ ​campo​ ​arriba 120 20 Por​ ​defecto Por​ ​defecto Según​ ​control

Edición​ ​alfabética​ ​(10​ ​caracteres) 120 20 Fijo Por​ ​defecto Izquierda

Edición​ ​alfabética​ ​(40​ ​caracteres) 240 20 Por​ ​defecto Por​ ​defecto Izquierda

Edición​ ​numérica​ ​(2​ ​enteros,​ ​2​ ​decimales) 60 20 Fijo Por​ ​defecto Derecha

Edición​ ​numérica​ ​(9​ ​enteros,​ ​2​ ​decimales) 120 20 Fijo Por​ ​defecto Derecha

Edición​ ​fecha 120 20 Fijo Por​ ​defecto Derecha

Edición​ ​hora 90 20 Fijo Por​ ​defecto Derecha

Edición​ ​fecha​ ​y​ ​hora 180 20 Fijo Por​ ​defecto Izquierda

Botón 120 30 Fijo Por​ ​defecto Centrado

Combobox 120 20 Por​ ​defecto Por​ ​defecto Izquierda

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​estos​ ​tamaños​ ​se​ ​verán​ ​afectados​ ​por​ ​dos​ ​factores,​ ​el​ ​primero​ ​de​ ​ellos​ ​es
que​ ​los​ ​tipos​ ​de​ ​ancho​ ​y​ ​alto​ ​por​ ​defecto​ ​y​ ​proporcional​ ​se​ ​ajustarán​ ​al​ ​área​ ​disponible​ ​en​ ​el​ ​formulario​ ​y​ ​el
segundo​ ​es​ ​la​ ​aplicación​ ​de​ ​CSS​ ​que​ ​ajustará​ ​los​ ​anchos​ ​y​ ​altos​ ​de​ ​determinados​ ​controles.

119

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Layouts
Para​ ​mostrar​ ​la​ ​configuración​ ​de​ ​los​ ​layouts​ ​vamos​ ​a​ ​utilizar​ ​un​ ​nuestro​ ​formulario​ ​prototipo:

El​ ​objeto​ ​formulario​ ​generalmente​ ​tiene​ ​definido​ ​un​ ​layout​ ​con​ ​la​ ​siguiente​ ​configuración:

El​ ​layout​ ​de​ ​título​ ​tiene​ ​la​ ​siguiente​ ​configuración:

120

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

El​ ​layout​ ​de​ ​cabecera​ ​tiene​ ​la​ ​siguiente​ ​configuración:

El​ ​layout​ ​de​ ​detalle​ ​tiene​ ​la​ ​siguiente​ ​configuración:

El​ ​layout​ ​de​ ​botones​ ​tiene​ ​la​ ​siguiente​ ​configuración:

Título​ ​del​ ​formulario
El​ ​control​ ​​TXT_TIT​​ ​de​ ​tipo​ ​texto​ ​estático​ ​situado​ ​en​ ​la​ ​parte​ ​superior​ ​del​ ​formulario​ ​asume
automáticamente​ ​el​ ​nombre​ ​de​ ​singular​ ​de​ ​la​ ​tabla​ ​de​ ​origen​ ​del​ ​formulario,​ ​ya​ ​que​ ​ese​ ​es​ ​el​ ​valor​ ​por
defecto​ ​más​ ​habitual.​ ​Para​ ​atrapar​ ​el​ ​nombre​ ​singular​ ​de​ ​la​ ​tabla​ ​se​ ​usa​ ​una​ ​fórmula​ ​JavaScript​ ​en​ ​la
propiedad​ ​contenido​ ​del​ ​control.

121

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Título​ ​de​ ​la​ ​pestaña
Para​ ​unificar​ ​el​ ​criterio​ ​del​ ​título​ ​del​ ​formulario​ ​que​ ​se​ ​muestra​ ​en​ ​las​ ​pestañas​ ​se​ ​utilizamos​ ​la​ ​propiedad
título​ ​opcional.

Con​ ​el​ ​objetivo​ ​de​ ​que​ ​los​ ​título​ ​no​ ​sean​ ​demasiado​ ​grandes​ ​para​ ​conseguir​ ​que​ ​el​ ​tamaño​ ​de​ ​las​ ​pestaña
permanezca​ ​reducido​ ​y​ ​que​ ​puedan​ ​visualizarse​ ​un​ ​buen​ ​número​ ​de​ ​ellas​ ​utilizaremos​ ​una​ ​función
encargada​ ​de​ ​recortar​ ​al​ ​número​ ​de​ ​caracteres​ ​que​ ​le​ ​indiquemos​ ​el​ ​texto​ ​a​ ​mostrar.

La​ ​función​ ​es​ ​muy​ ​sencilla,​ ​se​ ​encarga​ ​de​ ​cortar​ ​el​ ​texto​ ​y​ ​añadirle​ ​unos​ ​puntos​ ​suspensivos​ ​“...”​ ​en​ ​el​ ​caso
de​ ​que​ ​el​ ​texto​ ​sea​ ​mayor​ ​que​ ​longitud​ ​indicada.

Como​ ​primer​ ​parámetro​ ​de​ ​la​ ​función​ ​le​ ​pasamos​ ​el​ ​texto.​ ​En​ ​el​ ​caso​ ​de​ ​tablas​ ​maestras​ ​se​ ​le​ ​pasa​ ​una
constante​ ​cuyo​ ​texto​ ​puede​ ​ser​ ​fácilmente​ ​traducido.

Como​ ​segundo​ ​parámetro​ ​de​ ​la​ ​función​ ​le​ ​pasamos​ ​la​ ​longitud​ ​a​ ​la​ ​que​ ​debe​ ​cortar​ ​el​ ​texto,​ ​si​ ​se​ ​le​ ​pasa
longitud​ ​0​ ​se​ ​aplica​ ​el​ ​texto​ ​completo.

¿Cuándo​ ​en​ ​vista​ ​o​ ​en​ ​cuadro​ ​de​ ​diálogo?
Como​ ​norma​ ​general​ ​deberíamos​ ​intentar​ ​que​ ​los​ ​formularios​ ​se​ ​muestre​ ​siempre​ ​en​ ​vista​ ​ya​ ​que​ ​tienen​ ​la
ventaja​ ​de​ ​permitir​ ​al​ ​usuario​ ​interactuar​ ​con​ ​otros​ ​formularios​ ​y​ ​vistas​ ​sin​ ​necesidad​ ​de​ ​cerrar​ ​el
previamente​ ​el​ ​formulario.

Cuando​ ​no​ ​nos​ ​interese​ ​que​ ​el​ ​usuario​ ​pueda​ ​hacer​ ​otras​ ​acciones​ ​en​ ​la​ ​aplicación​ ​sin​ ​antes​ ​cerrar​ ​el
formulario​ ​en​ ​curso​ ​debemos​ ​poner​ ​a​ ​verdadero​ ​la​ ​propiedad​ ​​siempre​ ​cuadro​ ​de​ ​diálogo​,​ ​lo​ ​que​ ​nos
garantiza​ ​que​ ​el​ ​usuario​ ​solo​ ​podrá​ ​trabajar​ ​en​ ​ese​ ​formulario.

Hay​ ​otros​ ​casos​ ​en​ ​los​ ​que​ ​al​ ​ser​ ​un​ ​formulario​ ​muy​ ​pequeño​ ​con​ ​poca​ ​información​ ​no​ ​queda​ ​bien​ ​si​ ​se
muestra​ ​en​ ​vista,​ ​en​ ​esos​ ​casos​ ​conviene​ ​declararlos​ ​también​ ​como​ ​​siempre​ ​en​ ​cuadro​ ​de​ ​diálogo
verdadero.

122

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Si​ ​lo​ ​disparas​ ​desde​ ​un​ ​proceso​ ​sale​ ​en​ ​cuadro​ ​de​ ​diálogo
Cuando​ ​ejecutamos​ ​un​ ​formulario​ ​o​ ​cualquier​ ​objeto​ ​de​ ​vista​ ​desde​ ​un​ ​proceso​ ​se​ ​nos​ ​visualizará​ ​en
cuadro​ ​de​ ​diálogo​ ​independientemente​ ​de​ ​lo​ ​que​ ​tenga​ ​el​ ​formulario​ ​en​ ​la​ ​propiedad​ ​​siempre​ ​cuadro​ ​de
diálogo​.

Que​ ​la​ ​ficha​ ​editada​ ​en​ ​el​ ​formulario​ ​esté​ ​bloqueada​ ​o​ ​no​ ​en​ ​el​ ​momento​ ​de​ ​mostrarse​ ​el​ ​formulario
dependerá​ ​si​ ​hemos​ ​leído​ ​la​ ​ficha​ ​en​ ​modo​ ​de​ ​lectura/escritura​ ​o​ ​solo​ ​lectura.​ ​En​ ​caso​ ​de​ ​lectura/escritura
se​ ​creará​ ​una​ ​transacción​ ​y​ ​la​ ​ficha​ ​estará​ ​bloqueada​ ​para​ ​otros​ ​usuarios​ ​de​ ​la​ ​misma​ ​forma​ ​que​ ​ocurriría
si​ ​otro​ ​proceso​ ​estuviese​ ​transaccionando​ ​con​ ​ese​ ​registro.

Mostrar​ ​un​ ​formulario​ ​en​ ​vista​ ​lanzado​ ​desde​ ​un​ ​proceso
Existe​ ​una​ ​alternativa​ ​para​ ​visualizar​ ​objetos​ ​de​ ​vista​ ​lanzados​ ​desde​ ​un​ ​proceso​ ​en​ ​vista​ ​evitando​ ​que​ ​se
muestren​ ​en​ ​cuadro​ ​de​ ​diálogo.​ ​Esto​ ​es​ ​útil​ ​por​ ​ejemplo​ ​si​ ​deseamos​ ​desde​ ​un​ ​proceso​ ​abrir​ ​varias
pestañas​ ​en​ ​vista​ ​con​ ​diferentes​ ​registros​ ​en​ ​formulario​ ​o​ ​listas​ ​en​ ​rejilla.

El​ ​siguiente​ ​script​ ​es​ ​un​ ​ejemplo​ ​de​ ​como​ ​podemos​ ​conseguirlo.

Podemos​ ​crear​ ​un​ ​proceso​ ​con​ ​este​ ​script​ ​JavaScript​ ​que​ ​recibirá​ ​estos​ ​4​ ​parámetros:

Hay​ ​que​ ​destacar​ ​que​ ​debemos​ ​pasar​ ​en​ ​un​ ​objeto​ ​cesta​ ​global​ ​el​ ​registro​ ​que​ ​queremos​ ​editar​ ​en​ ​el
formulario.

123

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Formularios​ ​de​ ​menú
Los​ ​menús​ ​son​ ​formularios​ ​especializados​ ​en​ ​facilitar​ ​la​ ​búsqueda​ ​de​ ​información​ ​y​ ​visualizar​ ​en​ ​objetos
de​ ​lista​ ​para​ ​facilitar​ ​la​ ​edición​ ​o​ ​procesado​ ​de​ ​dicha​ ​información.

Identificadores
Los​ ​controles​ ​incluidos​ ​en​ ​los​ ​formularios​ ​de​ ​menú​ ​siguen​ ​los​ ​siguientes​ ​criterios​ ​de​ ​nomenclatura​ ​que
podemos​ ​ver​ ​en​ ​la​ ​siguiente​ ​tabla​ ​que​ ​contiene​ ​los​ ​controles​ ​más​ ​habituales​ ​de​ ​un​ ​formulario.

Identificador Descripción

BTN_AVA_CTL Botón​ ​oculto​ ​que​ ​permite​ ​al​ ​usuario​ ​avanzar​ ​de​ ​control​ ​con​ ​la​ ​tecla​ ​​Intro​.

BTN_CNC Botón​ ​oculto​ ​que​ ​permite​ ​cerrar​ ​el​ ​menú​ ​con​ ​la​ ​tecla​ ​​Escape​.

LAY_TIT Layout​ ​del​ ​título.

TXT_TIT Título​ ​del​ ​formulario.

LAY_CAB Layout​ ​de​ ​cabecera.

ESP_CAB Espaciador​ ​cabecera.

LAY_BUS Layout​ ​búsqueda.

LAY_TXT Layout​ ​texto​ ​a​ ​buscar.

TXT_BUS Control​ ​de​ ​edición​ ​del​ ​texto​ ​a​ ​buscar​ ​(Con​ ​retardo​ ​señal​ ​ValueChanged)

BTN_BUS Botón​ ​buscar.

ESP_TXT Espaciador​ ​texto​ ​a​ ​buscar.

BTN_AMP Para​ ​mostrar​ ​la​ ​búsqueda​ ​ampliada​ ​o​ ​avanzada.

BTN_RED Para​ ​ocultar​ ​la​ ​búsqueda​ ​ampliada​ ​o​ ​avanzada.

TXT_FCH Texto​ ​estático​ ​del​ ​período​ ​de​ ​fechas.

LAY_FCH Layout​ ​fechas.

FCH_DES Fecha​ ​desde.

FCH_HAS Fecha​ ​hasta.

ESP_FCH Espaciador​ ​fechas.

LAY_DET Layout​ ​detalle.

LST Vista​ ​de​ ​datos​ ​de​ ​lista.

Un​ ​formulario​ ​de​ ​menú​ ​prototipo​ ​con​ ​estos​ ​controles​ ​sería​ ​el​ ​siguiente:

124

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

En​ ​ejecución​ ​se​ ​muestra​ ​por​ ​defecto​ ​con​ ​el​ ​siguiente​ ​diseño​ ​con​ ​búsqueda​ ​estándar:

y​ ​con​ ​búsqueda​ ​avanzada​ ​o​ ​ampliada​ ​queda​ ​así:

125

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Layouts
En​ ​un​ ​formulario​ ​de​ ​menú​ ​prototipo​ ​utilizamos​ ​las​ ​siguientes​ ​configuraciones​ ​de​ ​layout:

El​ ​objeto​ ​formulario​ ​generalmente​ ​tiene​ ​definido​ ​un​ ​layout​ ​con​ ​la​ ​siguiente​ ​configuración:

El​ ​layout​ ​de​ ​título​ ​tiene​ ​la​ ​siguiente​ ​configuración:

126

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

El​ ​layout​ ​de​ ​cabecera​ ​tiene​ ​la​ ​siguiente​ ​configuración:

El​ ​layout​ ​de​ ​búsqueda​ ​tiene​ ​la​ ​siguiente​ ​configuración:

El​ ​layout​ ​de​ ​detalle​ ​tiene​ ​la​ ​siguiente​ ​configuración:

127

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

El​ ​resto​ ​de​ ​layouts​ ​que​ ​se​ ​usan​ ​para​ ​agrupar​ ​controles​ ​como​ ​el​ ​layout​ ​de​ ​texto​ ​a​ ​buscar​ ​y​ ​layout​ ​de​ ​fechas,
tienen​ ​la​ ​siguiente​ ​configuración​ ​para​ ​ajustar​ ​al​ ​máximo​ ​los​ ​márgenes​ ​separando​ ​los​ ​controles​ ​internos:

Título​ ​de​ ​la​ ​pestaña
A​ ​diferencia​ ​de​ ​los​ ​formularios​ ​de​ ​edición​ ​el​ ​título​ ​de​ ​la​ ​pestaña​ ​de​ ​un​ ​menú​ ​se​ ​asume​ ​de​ ​la​ ​propiedad
nombre​ ​del​ ​formulario.

Con​ ​el​ ​fin​ ​de​ ​evitar​ ​programación​ ​y​ ​el​ ​típico​ ​efecto​ ​de​ ​copiar/pegar​ ​que​ ​se​ ​produce​ ​cuando​ ​creamos​ ​un
formulario​ ​de​ ​menú​ ​a​ ​partir​ ​de​ ​otro​ ​y​ ​se​ ​nos​ ​olvida​ ​cambiar​ ​la​ ​propiedad​ ​nombre​ ​se​ ​utiliza​ ​un​ ​manejador​ ​de
evento​ ​de​ ​tipo​ ​JavaScript​ ​llamado​ ​​CHG_TIT​​ ​(cambiar​ ​título)​ ​que​ ​solo​ ​tiene​ ​esta​ ​línea​ ​de​ ​código.

Podemos​ ​copiar​ ​este​ ​manejador​ ​en​ ​todos​ ​los​ ​menús​ ​y​ ​funcionará​ ​correctamente​ ​ya​ ​que​ ​se​ ​encarga​ ​de
atrapar​ ​el​ ​valor​ ​de​ ​la​ ​propiedad​ ​nombre​ ​del​ ​formulario​ ​y​ ​ponerlo​ ​en​ ​el​ ​control​ ​​TXT_TIT​​ ​que​ ​es​ ​de​ ​tipo
Nombre​ ​de​ ​campo​​ ​sin​ ​ninguna​ ​resolución​ ​de​ ​campo,​ ​ya​ ​que​ ​este​ ​tipo​ ​de​ ​control​ ​si​ ​permite​ ​cambiar
dinámicamente​ ​su​ ​contenido.​ ​El​ ​manejador​ ​​CHG_TIT​​ ​es​ ​ejecutado​ ​por​ ​el​ ​manejador​ ​​POS_INI​​ ​al​ ​construirse
el​ ​formulario.

128

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Rejillas
Se​ ​trata​ ​del​ ​objeto​ ​más​ ​usado​ ​en​ ​las​ ​aplicaciones​ ​Velneo​ ​ya​ ​que​ ​sabemos​ ​que​ ​como​ ​usuarios​ ​nos​ ​gusta
recibir​ ​la​ ​información​ ​en​ ​modo​ ​lista​ ​para​ ​luego​ ​filtrar​ ​o​ ​entrar​ ​en​ ​el​ ​detalle​ ​de​ ​determinadas​ ​fichas.

Identificadores
Los​ ​identificadores​ ​de​ ​las​ ​columnas​ ​deben​ ​coincidir​ ​con​ ​su​ ​contenido.​ ​Si​ ​el​ ​contenido​ ​es​ ​un​ ​campo​ ​el
identificador​ ​debe​ ​ser​ ​el​ ​mismo​ ​que​ ​el​ ​del​ ​campo,​ ​si​ ​es​ ​una​ ​fórmula​ ​deberíamos​ ​poner​ ​un​ ​identificador​ ​que
represente​ ​el​ ​resultado​ ​de​ ​la​ ​fórmula.

Anchos​ ​y​ ​alineamientos​ ​de​ ​columnas​ ​en​ ​función​ ​del​ ​tipo​ ​de​ ​dato
En​ ​la​ ​siguiente​ ​tabla​ ​se​ ​describen​ ​los​ ​anchos,​ ​tipos​ ​de​ ​ancho​ ​y​ ​alineación​ ​de​ ​los​ ​tipos​ ​de​ ​datos​ ​más​ ​típicos
utilizados​ ​en​ ​rejillas.

Tipo​ ​de​ ​dato Ancho Tipo​ ​de​ ​ancho Alineación

Texto​ ​de​ ​tamaño​ ​fijo​ ​(3​ ​caracteres) 30 Interactivo​ ​o​ ​fijo Izquierda

Texto​ ​de​ ​tamaño​ ​fijo​ ​(9​ ​caracteres) 90 Interactivo​ ​o​ ​fijo Izquierda

Texto​ ​de​ ​tamaño​ ​fijo​ ​(12​ ​caracteres) 120 Interactivo​ ​o​ ​fijo Izquierda

Texto​ ​de​ ​tamaño​ ​variable​ ​(40​ ​caracteres) 200 Máximo​ ​disponible Izquierda

Fecha 90 Interactivo​ ​o​ ​fijo Derecha

Número​ ​corto​ ​(2​ ​enteros,​ ​2​ ​decimales) 60 Interactivo​ ​o​ ​fijo Derecha

Número​ ​medio​ ​(6​ ​enteros,​ ​2​ ​decimales) 90 Interactivo​ ​o​ ​fijo Derecha

Número​ ​largo​ ​(9​ ​enteros,​ ​2​ ​decimales) 120 Interactivo​ ​o​ ​fijo Derecha

Icono​ ​pequeño 30 Interactivo​ ​o​ ​fijo Centrado

Dibujo​ ​grande 120 Interactivo​ ​o​ ​fijo Centrado

Si​ ​en​ ​una​ ​rejilla​ ​no​ ​hay​ ​ninguna​ ​columna​ ​de​ ​tipo​ ​de​ ​ancho​ ​“​máximo​ ​disponible​”​ ​pondremos​ ​a​ ​todas​ ​las
columnas​ ​el​ ​tipo​ ​de​ ​ancho​ ​como​ ​“​máximo​ ​disponible​”.

129

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Crea​ ​rejillas​ ​específicas​ ​para​ ​uso​ ​en​ ​formularios​ ​de​ ​maestros
Dado​ ​que​ ​los​ ​objetos​ ​de​ ​vista​ ​se​ ​pueden​ ​utilizar​ ​tanto​ ​dentro​ ​de​ ​la​ ​interfaz​ ​de​ ​la​ ​aplicación​ ​por​ ​parte​ ​del
programador​ ​como​ ​ser​ ​usados​ ​por​ ​los​ ​usuarios​ ​en​ ​caso​ ​de​ ​no​ ​ser​ ​privadas,​ ​conviene​ ​que​ ​por​ ​cada​ ​tabla​ ​se
cree​ ​una​ ​rejilla​ ​“completa”​ ​con​ ​todos​ ​los​ ​campos​ ​o​ ​al​ ​menos​ ​los​ ​más​ ​significativos.

Adicionalmente,​ ​debemos​ ​crear​ ​rejillas​ ​específicas​ ​que​ ​se​ ​visualizarán​ ​en​ ​las​ ​vistas​ ​de​ ​plurales​ ​de​ ​tablas
maestras.​ ​Estas​ ​rejillas​ ​tienen​ ​la​ ​peculiaridad​ ​de​ ​que​ ​no​ ​contienen​ ​la​ ​columnas​ ​o​ ​columnas​ ​con
información​ ​del​ ​maestro​ ​que​ ​ya​ ​es​ ​visible​ ​en​ ​el​ ​formulario​ ​que​ ​contiene​ ​la​ ​rejilla.​ ​A​ ​continuación​ ​vemos​ ​en
primer​ ​lugar​ ​la​ ​rejilla​ ​de​ ​cobros​ ​​VTO_COB_C​​ ​con​ ​todas​ ​las​ ​columnas​ ​y​ ​debajo​ ​la​ ​rejilla​ ​de​ ​cobros​ ​de​ ​una
cuenta​ ​auxiliar​ ​​VTO_COB_C_AUX​​ ​que​ ​podemos​ ​observar​ ​que​ ​no​ ​tiene​ ​la​ ​primera​ ​columna​ ​auxiliar.

130

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Alternadores​ ​de​ ​lista
El​ ​objeto​ ​alternador​ ​de​ ​lista​ ​es​ ​muy​ ​útil​ ​al​ ​permitir​ ​contener​ ​múltiples​ ​objetos​ ​de​ ​vista​ ​de​ ​datos​ ​facilitando
al​ ​usuario​ ​final​ ​la​ ​posibilidad​ ​de​ ​ver​ ​la​ ​misma​ ​información​ ​con​ ​diferentes​ ​formatos​ ​o​ ​vistas​ ​(rejillas,
informes,​ ​casilleros,​ ​etc.)​ ​además​ ​de​ ​forma​ ​optimizada.​ ​Por​ ​lo​ ​tanto​ ​su​ ​uso​ ​es​ ​recomendado.

Usa​ ​un​ ​alternador​ ​en​ ​lugar​ ​de​ ​poner​ ​la​ ​rejilla​ ​directamente
Una​ ​buena​ ​práctica​ ​consiste​ ​en​ ​no​ ​poner​ ​directamente​ ​rejillas​ ​en​ ​las​ ​vistas​ ​de​ ​datos​ ​y​ ​en​ ​su​ ​lugar​ ​poner
siempre​ ​un​ ​alternador​ ​de​ ​lista.​ ​Aunque​ ​en​ ​muchos​ ​casos​ ​solo​ ​haya​ ​una​ ​rejilla,​ ​esta​ ​técnica​ ​permite​ ​que​ ​en
el​ ​futuro​ ​se​ ​puedan​ ​añadir​ ​nuevas​ ​vistas​ ​de​ ​forma​ ​sencilla.

Puede​ ​ser​ ​normal​ ​que​ ​tengamos​ ​que​ ​crear​ ​múltiples​ ​alternadores​ ​de​ ​lista​ ​para​ ​la​ ​misma​ ​tabla.

Reducimos​ ​la​ ​cantidad​ ​de​ ​código
Una​ ​de​ ​las​ ​grandes​ ​ventajas​ ​de​ ​usar​ ​alternadores​ ​es​ ​que​ ​las​ ​conexiones​ ​y​ ​manejadores​ ​de​ ​evento​ ​que​ ​les
declaremos​ ​serán​ ​funcionales​ ​para​ ​todas​ ​las​ ​vistas​ ​declaradas​ ​en​ ​el​ ​alternador.​ ​Por​ ​ejemplo,​ ​si​ ​tenemos
una​ ​toolbar​ ​que​ ​usamos​ ​para​ ​dar​ ​funcionalidad​ ​a​ ​varias​ ​vistas​ ​al​ ​aplicarla​ ​a​ ​través​ ​del​ ​alternador​ ​conseguir
que​ ​en​ ​lugar​ ​de​ ​declarar​ ​en​ ​todas​ ​las​ ​rejillas​ ​las​ ​conexiones​ ​y​ ​manejadores​ ​duplicados​ ​los​ ​tendremos
declarados​ ​una​ ​única​ ​vez​ ​en​ ​el​ ​alternador​ ​ya​ ​que​ ​es​ ​capaz​ ​de​ ​lanzar​ ​los​ ​manejadores​ ​contra​ ​el​ ​objeto​ ​en
curso.​ ​En​ ​las​ ​siguientes​ ​capturas​ ​podemos​ ​ver​ ​como​ ​en​ ​un​ ​alternador​ ​hemos​ ​declarado​ ​7​ ​conexiones​ ​de
evento​ ​y​ ​sus​ ​manejadores​ ​que​ ​son​ ​lanzados​ ​por​ ​acciones​ ​disparadas​ ​desde​ ​una​ ​toolbar,​ ​si​ ​este​ ​alternador
contiene​ ​3​ ​rejillas​ ​hemos​ ​conseguido​ ​que​ ​todas​ ​tengan​ ​la​ ​misma​ ​funcionalidad​ ​ahorrando​ ​repetir​ ​el​ ​código
3​ ​veces.

​ ​​ ​​ ​

131

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Calidad
La​ ​calidad​ ​de​ ​una​ ​aplicación​ ​es​ ​resultado​ ​de​ ​todo​ ​el​ ​trabajo​ ​realizado​ ​durante​ ​el​ ​ciclo​ ​completo​ ​de
desarrollo.​ ​Al​ ​finalizar​ ​un​ ​sprint,​ ​revisión​ ​o​ ​versión​ ​y​ ​antes​ ​de​ ​su​ ​puesta​ ​en​ ​producción,​ ​es​ ​muy
recomendable​ ​realizar​ ​siempre​ ​las​ ​siguientes​ ​opciones​ ​para​ ​garantizar​ ​la​ ​máxima​ ​calidad.

Revisa​ ​los​ ​objetos​ ​no​ ​usados​ ​directamente​ ​con​ ​la​ ​extensión
Otro​ ​aspecto​ ​crítico​ ​en​ ​la​ ​calidad​ ​del​ ​software​ ​es​ ​la​ ​limpieza​ ​del​ ​código,​ ​tener​ ​el​ ​proyecto​ ​objetos​ ​que​ ​no
se​ ​utilizan​ ​es​ ​una​ ​mala​ ​praxis,​ ​y​ ​aún​ ​es​ ​más​ ​grave​ ​cuando​ ​disponemos​ ​de​ ​otra​ ​extensión​ ​que​ ​se​ ​encarga
de​ ​realizar​ ​esa​ ​labor​ ​por​ ​nosotros​ ​mostrándonos​ ​en​ ​segundos​ ​la​ ​lista​ ​de​ ​objetos​ ​no​ ​usados​ ​en​ ​el​ ​proyecto.

En​ ​el​ ​menú​ ​de​ ​Objetos​ ​encontraremos​ ​la​ ​opción​ ​“​Objetos​ ​no​ ​usados​ ​directamente​”.​ ​El​ ​nombre​ ​lo​ ​dice​ ​todo,
son​ ​objetos​ ​que​ ​no​ ​son​ ​usados​ ​directamente​ ​dentro​ ​de​ ​los​ ​proyectos​ ​a​ ​través​ ​de​ ​código​ ​nativo​ ​Velneo.

Al​ ​lanzar​ ​esta​ ​opción​ ​nos​ ​aparecerá​ ​la​ ​extensión​ ​que​ ​podremos​ ​ejecutar​ ​simplemente​ ​pulsando​ ​el​ ​botón
situado​ ​en​ ​la​ ​parte​ ​superior.

132

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Hay​ ​que​ ​tener​ ​en​ ​cuenta​ ​que​ ​hay​ ​objetos​ ​que​ ​se​ ​usan​ ​directamente​ ​en​ ​ejecución​ ​como​ ​por​ ​ejemplo​ ​los
objeto​ ​dibujo​ ​que​ ​aparecen​ ​al​ ​principio​ ​de​ ​la​ ​lista​ ​de​ ​la​ ​captura​ ​anterior​ ​se​ ​usan​ ​en​ ​un​ ​JavaScript​ ​que​ ​los
exporta​ ​para​ ​usarlos​ ​en​ ​las​ ​CSS,​ ​por​ ​lo​ ​tanto​ ​antes​ ​de​ ​eliminar​ ​un​ ​objeto​ ​conviene​ ​buscarlo​ ​en​ ​los​ ​scripts
(usando​ ​el​ ​check​ ​de​ ​herencia)​ ​para​ ​intentar​ ​asegurar​ ​que​ ​no​ ​es​ ​usado.​ ​Aún​ ​usando​ ​la​ ​búsqueda​ ​en​ ​scripts
no​ ​podemos​ ​garantizar​ ​que​ ​el​ ​objeto​ ​no​ ​sea​ ​usado​ ​ya​ ​que​ ​podemos​ ​tener​ ​en​ ​nuestra​ ​aplicación​ ​scripts
dinámicos​ ​almacenados​ ​en​ ​tablas​ ​de​ ​la​ ​base​ ​de​ ​datos,​ ​por​ ​lo​ ​que​ ​sería​ ​conveniente​ ​revisar​ ​que​ ​no​ ​usen
dicho​ ​objeto​ ​dentro​ ​de​ ​scripts​ ​externos​ ​al​ ​proyecto.

También​ ​puede​ ​ocurrir​ ​que​ ​nos​ ​encontremos​ ​con​ ​objetos​ ​como​ ​acciones​ ​o​ ​procesos​ ​que​ ​aparentemente
no​ ​se​ ​usan​ ​pero​ ​que​ ​en​ ​realidad​ ​son​ ​ejecutados​ ​de​ ​forma​ ​dinámica​ ​en​ ​tiempo​ ​de​ ​ejecución,​ ​como​ ​puede
ocurrir​ ​con​ ​las​ ​opciones​ ​de​ ​menú​ ​cuya​ ​configuración​ ​puede​ ​estar​ ​almacenada​ ​en​ ​una​ ​tabla​ ​en​ ​disco.

En​ ​definitiva,​ ​este​ ​inspector​ ​es​ ​de​ ​gran​ ​ayuda​ ​y​ ​nos​ ​simplifica​ ​los​ ​objetos​ ​que​ ​tenemos​ ​que​ ​revisar​ ​porque
no​ ​tengan​ ​un​ ​uso​ ​directo,​ ​aunque​ ​tenemos​ ​que​ ​realizar​ ​una​ ​revisión​ ​posterior​ ​para​ ​antes​ ​de​ ​eliminarlos
asegurarnos​ ​de​ ​que​ ​no​ ​son​ ​usados.

Es​ ​importante​ ​realizar​ ​siempre​ ​esta​ ​limpieza​ ​en​ ​nuestros​ ​proyectos​ ​periódicamente.​ ​Un​ ​buen​ ​momento
puede​ ​ser​ ​al​ ​principio​ ​de​ ​una​ ​nueva​ ​versión​ ​o​ ​revisión,​ ​ya​ ​que​ ​en​ ​caso​ ​de​ ​eliminar​ ​un​ ​objeto​ ​que​ ​sí​ ​es​ ​usado
será​ ​más​ ​fácil​ ​de​ ​detectar​ ​en​ ​las​ ​pruebas​ ​del​ ​desarrollador​ ​o​ ​de​ ​los​ ​testers.

Revisa​ ​los​ ​errores​ ​con​ ​el​ ​inspector​ ​en​ ​todos​ ​los​ ​proyectos
Realmente​ ​deberíamos​ ​usar​ ​el​ ​inspector​ ​de​ ​errores​ ​para​ ​revisarlos​ ​antes​ ​de​ ​cualquier​ ​ejecución.​ ​Si​ ​no​ ​lo
hacemos​ ​siempre,​ ​sí​ ​que​ ​es​ ​conveniente​ ​revisarlo​ ​de​ ​vez​ ​en​ ​cuando​ ​durante​ ​una​ ​sesión​ ​de​ ​desarrollo​ ​y
desde​ ​luego​ ​antes​ ​de​ ​cerrar​ ​el​ ​editor​ ​tras​ ​finalizar​ ​una​ ​sesión​ ​de​ ​trabajo.​ ​No​ ​deberíamos​ ​tener​ ​ningún​ ​error

133

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

detectado​ ​por​ ​el​ ​inspector​ ​de​ ​errores,​ ​salvo​ ​excepciones​ ​como​ ​algunos​ ​avisos​ ​por​ ​el​ ​uso​ ​de​ ​comandos​ ​de
instrucción​ ​obsoletos,​ ​en​ ​cuyo​ ​caso​ ​lo​ ​recomendable​ ​es​ ​sustituirlo​ ​cuanto​ ​antes​ ​para​ ​evitar​ ​que​ ​aparezcan
los​ ​errores​ ​en​ ​el​ ​inspector.

Siempre​ ​que​ ​vayamos​ ​a​ ​publicar​ ​una​ ​versión​ ​o​ ​a​ ​ponerla​ ​en​ ​un​ ​servidor​ ​de​ ​producción​ ​es​ ​“obligatorio”
pasar​ ​el​ ​inspector​ ​de​ ​errores​ ​para​ ​obtener​ ​un​ ​resultado​ ​como​ ​el​ ​mostrado​ ​en​ ​la​ ​captura​ ​anterior.

Revisa​ ​la​ ​ortografía​ ​con​ ​la​ ​extensión
Aunque​ ​los​ ​errores​ ​de​ ​programación​ ​nos​ ​parece​ ​importantes​ ​a​ ​los​ ​programadores,​ ​a​ ​los​ ​usuarios​ ​finales
los​ ​errores​ ​ortográficos​ ​les​ ​resultan​ ​igual​ ​de​ ​molestos​ ​que​ ​cualquier​ ​error​ ​funcional.​ ​Los​ ​programadores
tenemos​ ​una​ ​disposición​ ​a​ ​escribir​ ​igual​ ​que​ ​programamos,​ ​evitando​ ​el​ ​uso​ ​de​ ​acentos,​ ​escribir​ ​todas​ ​las
palabras​ ​con​ ​la​ ​primera​ ​en​ ​mayúscula,​ ​etc.​ ​Esto​ ​que​ ​a​ ​priori​ ​nos​ ​puede​ ​parecer​ ​normal,​ ​es​ ​una​ ​falta​ ​de
calidad​ ​en​ ​nuestro​ ​software​ ​que​ ​los​ ​usuarios​ ​finales​ ​detectan​ ​rápidamente.

Para​ ​evitar​ ​estos​ ​problemas​ ​tenemos​ ​que​ ​tomar​ ​2​ ​medidas.​ ​La​ ​primera​ ​es​ ​escribir​ ​siempre​ ​bien,​ ​acentuar
correctamente​ ​las​ ​palabras,​ ​hacer​ ​buen​ ​uso​ ​de​ ​las​ ​mayúsculas​ ​y​ ​minúsculas,​ ​poner​ ​puntuación​ ​en​ ​las
frases​ ​y​ ​no​ ​utilizar​ ​abreviaturas​ ​desconocidas​ ​para​ ​el​ ​usuario,​ ​en​ ​definitiva,​ ​escribir​ ​bien​ ​de​ ​la​ ​misma​ ​forma
que​ ​cuidamos​ ​el​ ​texto​ ​en​ ​los​ ​correos​ ​electrónicos​ ​o​ ​si​ ​estuviésemos​ ​escribiendo​ ​un​ ​libro.​ ​La​ ​segunda
medida​ ​es​ ​utilizar​ ​la​ ​extensión​ ​de​ ​vDevelop​ ​“Corrector​ ​ortográfico”​ ​disponible​ ​en​ ​el​ ​menú​ ​de​ ​Proyectos.

Al​ ​ejecutarla​ ​se​ ​nos​ ​mostrará​ ​en​ ​la​ ​parte​ ​izquierda​ ​la​ ​lista​ ​de​ ​palabras​ ​que​ ​no​ ​son​ ​válidas​ ​o​ ​si​ ​lo​ ​son​ ​no
están​ ​identificadas​ ​como​ ​válida​ ​en​ ​nuestro​ ​diccionario​ ​personal.​ ​A​ ​la​ ​derecha​ ​se​ ​muestran​ ​todas​ ​las
palabras​ ​que​ ​hemos​ ​añadido​ ​a​ ​nuestro​ ​diccionario​ ​personal.

134

Guía​ ​de​ ​estilo​ ​de​ ​programación​ ​Velneo

Si​ ​hacemos​ ​doble​ ​clic​ ​sobre​ ​la​ ​palabra​ ​se​ ​nos​ ​abre​ ​el​ ​lugar​ ​donde​ ​se​ ​usa​ ​para​ ​que​ ​podamos​ ​corregirla,​ ​si
consideramos​ ​que​ ​la​ ​palabra​ ​es​ ​correcta​ ​hacemos​ ​clic​ ​en​ ​el​ ​check​ ​situado​ ​a​ ​la​ ​izquierda​ ​de​ ​la​ ​palabra​ ​y​ ​se
añadirá​ ​al​ ​diccionario​ ​personal​ ​dejando​ ​de​ ​aparecer​ ​como​ ​erróneamente,​ ​si​ ​esa​ ​palabra​ ​está​ ​repetida​ ​en
más​ ​lugares​ ​al​ ​entrar​ ​en​ ​el​ ​diccionario​ ​personal​ ​desaparecen​ ​de​ ​la​ ​lista​ ​todas​ ​sus​ ​instancias.

Así​ ​pues,​ ​no​ ​hay​ ​excusa​ ​para​ ​entregar​ ​una​ ​aplicación​ ​con​ ​errores​ ​ortográficos.​ ​La​ ​calidad​ ​empieza​ ​aquí.

135

